sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4851, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([175,110,63]))
pari:[g,chi] = znchar(Mod(536,4851))
| Modulus: | \(4851\) | |
| Conductor: | \(4851\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4851}(2,\cdot)\)
\(\chi_{4851}(95,\cdot)\)
\(\chi_{4851}(347,\cdot)\)
\(\chi_{4851}(380,\cdot)\)
\(\chi_{4851}(536,\cdot)\)
\(\chi_{4851}(662,\cdot)\)
\(\chi_{4851}(695,\cdot)\)
\(\chi_{4851}(788,\cdot)\)
\(\chi_{4851}(821,\cdot)\)
\(\chi_{4851}(1040,\cdot)\)
\(\chi_{4851}(1073,\cdot)\)
\(\chi_{4851}(1229,\cdot)\)
\(\chi_{4851}(1262,\cdot)\)
\(\chi_{4851}(1355,\cdot)\)
\(\chi_{4851}(1388,\cdot)\)
\(\chi_{4851}(1481,\cdot)\)
\(\chi_{4851}(1514,\cdot)\)
\(\chi_{4851}(1766,\cdot)\)
\(\chi_{4851}(1922,\cdot)\)
\(\chi_{4851}(1955,\cdot)\)
\(\chi_{4851}(2048,\cdot)\)
\(\chi_{4851}(2081,\cdot)\)
\(\chi_{4851}(2207,\cdot)\)
\(\chi_{4851}(2426,\cdot)\)
\(\chi_{4851}(2459,\cdot)\)
\(\chi_{4851}(2648,\cdot)\)
\(\chi_{4851}(2741,\cdot)\)
\(\chi_{4851}(2867,\cdot)\)
\(\chi_{4851}(2900,\cdot)\)
\(\chi_{4851}(3119,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4313,199,442)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{11}{21}\right),e\left(\frac{3}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 4851 }(536, a) \) |
\(1\) | \(1\) | \(e\left(\frac{79}{105}\right)\) | \(e\left(\frac{53}{105}\right)\) | \(e\left(\frac{39}{70}\right)\) | \(e\left(\frac{9}{35}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{53}{210}\right)\) | \(e\left(\frac{1}{105}\right)\) | \(e\left(\frac{31}{105}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{13}{210}\right)\) |
sage:chi.jacobi_sum(n)