sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4851, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([70,95,63]))
pari:[g,chi] = znchar(Mod(283,4851))
| Modulus: | \(4851\) | |
| Conductor: | \(4851\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4851}(61,\cdot)\)
\(\chi_{4851}(94,\cdot)\)
\(\chi_{4851}(250,\cdot)\)
\(\chi_{4851}(283,\cdot)\)
\(\chi_{4851}(376,\cdot)\)
\(\chi_{4851}(409,\cdot)\)
\(\chi_{4851}(502,\cdot)\)
\(\chi_{4851}(535,\cdot)\)
\(\chi_{4851}(787,\cdot)\)
\(\chi_{4851}(943,\cdot)\)
\(\chi_{4851}(976,\cdot)\)
\(\chi_{4851}(1069,\cdot)\)
\(\chi_{4851}(1102,\cdot)\)
\(\chi_{4851}(1228,\cdot)\)
\(\chi_{4851}(1447,\cdot)\)
\(\chi_{4851}(1480,\cdot)\)
\(\chi_{4851}(1669,\cdot)\)
\(\chi_{4851}(1762,\cdot)\)
\(\chi_{4851}(1888,\cdot)\)
\(\chi_{4851}(1921,\cdot)\)
\(\chi_{4851}(2140,\cdot)\)
\(\chi_{4851}(2173,\cdot)\)
\(\chi_{4851}(2329,\cdot)\)
\(\chi_{4851}(2362,\cdot)\)
\(\chi_{4851}(2455,\cdot)\)
\(\chi_{4851}(2488,\cdot)\)
\(\chi_{4851}(2581,\cdot)\)
\(\chi_{4851}(2614,\cdot)\)
\(\chi_{4851}(2833,\cdot)\)
\(\chi_{4851}(2866,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4313,199,442)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{19}{42}\right),e\left(\frac{3}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 4851 }(283, a) \) |
\(1\) | \(1\) | \(e\left(\frac{83}{210}\right)\) | \(e\left(\frac{83}{105}\right)\) | \(e\left(\frac{69}{70}\right)\) | \(e\left(\frac{13}{70}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{94}{105}\right)\) | \(e\left(\frac{61}{105}\right)\) | \(e\left(\frac{1}{105}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{163}{210}\right)\) |
sage:chi.jacobi_sum(n)