Properties

Label 4851.1535
Modulus $4851$
Conductor $4851$
Order $210$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4851, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([175,100,189]))
 
Copy content pari:[g,chi] = znchar(Mod(1535,4851))
 

Basic properties

Modulus: \(4851\)
Conductor: \(4851\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4851.gc

\(\chi_{4851}(74,\cdot)\) \(\chi_{4851}(149,\cdot)\) \(\chi_{4851}(200,\cdot)\) \(\chi_{4851}(326,\cdot)\) \(\chi_{4851}(338,\cdot)\) \(\chi_{4851}(464,\cdot)\) \(\chi_{4851}(578,\cdot)\) \(\chi_{4851}(590,\cdot)\) \(\chi_{4851}(767,\cdot)\) \(\chi_{4851}(842,\cdot)\) \(\chi_{4851}(893,\cdot)\) \(\chi_{4851}(1019,\cdot)\) \(\chi_{4851}(1031,\cdot)\) \(\chi_{4851}(1271,\cdot)\) \(\chi_{4851}(1283,\cdot)\) \(\chi_{4851}(1460,\cdot)\) \(\chi_{4851}(1535,\cdot)\) \(\chi_{4851}(1712,\cdot)\) \(\chi_{4851}(1724,\cdot)\) \(\chi_{4851}(1850,\cdot)\) \(\chi_{4851}(1964,\cdot)\) \(\chi_{4851}(1976,\cdot)\) \(\chi_{4851}(2153,\cdot)\) \(\chi_{4851}(2228,\cdot)\) \(\chi_{4851}(2279,\cdot)\) \(\chi_{4851}(2405,\cdot)\) \(\chi_{4851}(2417,\cdot)\) \(\chi_{4851}(2543,\cdot)\) \(\chi_{4851}(2657,\cdot)\) \(\chi_{4851}(2669,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((4313,199,442)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{10}{21}\right),e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 4851 }(1535, a) \) \(1\)\(1\)\(e\left(\frac{4}{35}\right)\)\(e\left(\frac{8}{35}\right)\)\(e\left(\frac{121}{210}\right)\)\(e\left(\frac{12}{35}\right)\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{59}{210}\right)\)\(e\left(\frac{16}{35}\right)\)\(e\left(\frac{53}{105}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{169}{210}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4851 }(1535,a) \;\) at \(\;a = \) e.g. 2