Properties

Label 4851.1436
Modulus $4851$
Conductor $4851$
Order $210$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4851, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([175,150,189]))
 
Copy content pari:[g,chi] = znchar(Mod(1436,4851))
 

Basic properties

Modulus: \(4851\)
Conductor: \(4851\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4851.fn

\(\chi_{4851}(29,\cdot)\) \(\chi_{4851}(239,\cdot)\) \(\chi_{4851}(281,\cdot)\) \(\chi_{4851}(365,\cdot)\) \(\chi_{4851}(470,\cdot)\) \(\chi_{4851}(596,\cdot)\) \(\chi_{4851}(722,\cdot)\) \(\chi_{4851}(743,\cdot)\) \(\chi_{4851}(974,\cdot)\) \(\chi_{4851}(1058,\cdot)\) \(\chi_{4851}(1163,\cdot)\) \(\chi_{4851}(1184,\cdot)\) \(\chi_{4851}(1289,\cdot)\) \(\chi_{4851}(1415,\cdot)\) \(\chi_{4851}(1436,\cdot)\) \(\chi_{4851}(1625,\cdot)\) \(\chi_{4851}(1751,\cdot)\) \(\chi_{4851}(1856,\cdot)\) \(\chi_{4851}(1877,\cdot)\) \(\chi_{4851}(1982,\cdot)\) \(\chi_{4851}(2129,\cdot)\) \(\chi_{4851}(2318,\cdot)\) \(\chi_{4851}(2360,\cdot)\) \(\chi_{4851}(2444,\cdot)\) \(\chi_{4851}(2570,\cdot)\) \(\chi_{4851}(2675,\cdot)\) \(\chi_{4851}(2801,\cdot)\) \(\chi_{4851}(2822,\cdot)\) \(\chi_{4851}(3011,\cdot)\) \(\chi_{4851}(3053,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((4313,199,442)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{5}{7}\right),e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 4851 }(1436, a) \) \(1\)\(1\)\(e\left(\frac{32}{105}\right)\)\(e\left(\frac{64}{105}\right)\)\(e\left(\frac{101}{210}\right)\)\(e\left(\frac{32}{35}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{29}{210}\right)\)\(e\left(\frac{23}{105}\right)\)\(e\left(\frac{16}{35}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{19}{210}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4851 }(1436,a) \;\) at \(\;a = \) e.g. 2