sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4851, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([175,150,189]))
pari:[g,chi] = znchar(Mod(1436,4851))
| Modulus: | \(4851\) | |
| Conductor: | \(4851\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4851}(29,\cdot)\)
\(\chi_{4851}(239,\cdot)\)
\(\chi_{4851}(281,\cdot)\)
\(\chi_{4851}(365,\cdot)\)
\(\chi_{4851}(470,\cdot)\)
\(\chi_{4851}(596,\cdot)\)
\(\chi_{4851}(722,\cdot)\)
\(\chi_{4851}(743,\cdot)\)
\(\chi_{4851}(974,\cdot)\)
\(\chi_{4851}(1058,\cdot)\)
\(\chi_{4851}(1163,\cdot)\)
\(\chi_{4851}(1184,\cdot)\)
\(\chi_{4851}(1289,\cdot)\)
\(\chi_{4851}(1415,\cdot)\)
\(\chi_{4851}(1436,\cdot)\)
\(\chi_{4851}(1625,\cdot)\)
\(\chi_{4851}(1751,\cdot)\)
\(\chi_{4851}(1856,\cdot)\)
\(\chi_{4851}(1877,\cdot)\)
\(\chi_{4851}(1982,\cdot)\)
\(\chi_{4851}(2129,\cdot)\)
\(\chi_{4851}(2318,\cdot)\)
\(\chi_{4851}(2360,\cdot)\)
\(\chi_{4851}(2444,\cdot)\)
\(\chi_{4851}(2570,\cdot)\)
\(\chi_{4851}(2675,\cdot)\)
\(\chi_{4851}(2801,\cdot)\)
\(\chi_{4851}(2822,\cdot)\)
\(\chi_{4851}(3011,\cdot)\)
\(\chi_{4851}(3053,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4313,199,442)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{5}{7}\right),e\left(\frac{9}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 4851 }(1436, a) \) |
\(1\) | \(1\) | \(e\left(\frac{32}{105}\right)\) | \(e\left(\frac{64}{105}\right)\) | \(e\left(\frac{101}{210}\right)\) | \(e\left(\frac{32}{35}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{29}{210}\right)\) | \(e\left(\frac{23}{105}\right)\) | \(e\left(\frac{16}{35}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{19}{210}\right)\) |
sage:chi.jacobi_sum(n)