sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4830, base_ring=CyclotomicField(132))
M = H._module
chi = DirichletCharacter(H, M([66,33,110,30]))
pari:[g,chi] = znchar(Mod(2987,4830))
\(\chi_{4830}(17,\cdot)\)
\(\chi_{4830}(143,\cdot)\)
\(\chi_{4830}(227,\cdot)\)
\(\chi_{4830}(383,\cdot)\)
\(\chi_{4830}(467,\cdot)\)
\(\chi_{4830}(563,\cdot)\)
\(\chi_{4830}(677,\cdot)\)
\(\chi_{4830}(773,\cdot)\)
\(\chi_{4830}(803,\cdot)\)
\(\chi_{4830}(983,\cdot)\)
\(\chi_{4830}(1193,\cdot)\)
\(\chi_{4830}(1307,\cdot)\)
\(\chi_{4830}(1433,\cdot)\)
\(\chi_{4830}(1487,\cdot)\)
\(\chi_{4830}(1643,\cdot)\)
\(\chi_{4830}(1907,\cdot)\)
\(\chi_{4830}(1937,\cdot)\)
\(\chi_{4830}(2273,\cdot)\)
\(\chi_{4830}(2357,\cdot)\)
\(\chi_{4830}(2453,\cdot)\)
\(\chi_{4830}(2537,\cdot)\)
\(\chi_{4830}(2567,\cdot)\)
\(\chi_{4830}(2747,\cdot)\)
\(\chi_{4830}(2777,\cdot)\)
\(\chi_{4830}(2873,\cdot)\)
\(\chi_{4830}(2903,\cdot)\)
\(\chi_{4830}(2987,\cdot)\)
\(\chi_{4830}(3323,\cdot)\)
\(\chi_{4830}(3377,\cdot)\)
\(\chi_{4830}(3503,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3221,967,2761,1891)\) → \((-1,i,e\left(\frac{5}{6}\right),e\left(\frac{5}{22}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) | \(47\) |
\( \chi_{ 4830 }(2987, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{33}\right)\) | \(e\left(\frac{19}{44}\right)\) | \(e\left(\frac{23}{132}\right)\) | \(e\left(\frac{5}{66}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{13}{66}\right)\) | \(e\left(\frac{91}{132}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{11}{12}\right)\) |
sage:chi.jacobi_sum(n)