Properties

Label 4830.1747
Modulus $4830$
Conductor $805$
Order $12$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4830, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,3,8,6]))
 
Copy content pari:[g,chi] = znchar(Mod(1747,4830))
 

Basic properties

Modulus: \(4830\)
Conductor: \(805\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{805}(137,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4830.bt

\(\chi_{4830}(1747,\cdot)\) \(\chi_{4830}(2713,\cdot)\) \(\chi_{4830}(3817,\cdot)\) \(\chi_{4830}(4783,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.1666791876841970703125.1

Values on generators

\((3221,967,2761,1891)\) → \((1,i,e\left(\frac{2}{3}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 4830 }(1747, a) \) \(1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(-i\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(-1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{12}\right)\)\(1\)\(i\)\(e\left(\frac{7}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4830 }(1747,a) \;\) at \(\;a = \) e.g. 2