sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4830, base_ring=CyclotomicField(132))
M = H._module
chi = DirichletCharacter(H, M([0,33,88,90]))
pari:[g,chi] = znchar(Mod(1537,4830))
\(\chi_{4830}(37,\cdot)\)
\(\chi_{4830}(67,\cdot)\)
\(\chi_{4830}(247,\cdot)\)
\(\chi_{4830}(373,\cdot)\)
\(\chi_{4830}(457,\cdot)\)
\(\chi_{4830}(613,\cdot)\)
\(\chi_{4830}(697,\cdot)\)
\(\chi_{4830}(793,\cdot)\)
\(\chi_{4830}(907,\cdot)\)
\(\chi_{4830}(1003,\cdot)\)
\(\chi_{4830}(1033,\cdot)\)
\(\chi_{4830}(1213,\cdot)\)
\(\chi_{4830}(1423,\cdot)\)
\(\chi_{4830}(1537,\cdot)\)
\(\chi_{4830}(1663,\cdot)\)
\(\chi_{4830}(1717,\cdot)\)
\(\chi_{4830}(1873,\cdot)\)
\(\chi_{4830}(2137,\cdot)\)
\(\chi_{4830}(2167,\cdot)\)
\(\chi_{4830}(2503,\cdot)\)
\(\chi_{4830}(2587,\cdot)\)
\(\chi_{4830}(2683,\cdot)\)
\(\chi_{4830}(2767,\cdot)\)
\(\chi_{4830}(2797,\cdot)\)
\(\chi_{4830}(2977,\cdot)\)
\(\chi_{4830}(3007,\cdot)\)
\(\chi_{4830}(3103,\cdot)\)
\(\chi_{4830}(3133,\cdot)\)
\(\chi_{4830}(3217,\cdot)\)
\(\chi_{4830}(3553,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3221,967,2761,1891)\) → \((1,i,e\left(\frac{2}{3}\right),e\left(\frac{15}{22}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) | \(47\) |
\( \chi_{ 4830 }(1537, a) \) |
\(1\) | \(1\) | \(e\left(\frac{53}{66}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{91}{132}\right)\) | \(e\left(\frac{2}{33}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{25}{33}\right)\) | \(e\left(\frac{119}{132}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{7}{44}\right)\) | \(e\left(\frac{7}{12}\right)\) |
sage:chi.jacobi_sum(n)