# Properties

 Label 4830.1151 Modulus $4830$ Conductor $21$ Order $6$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(4830, base_ring=CyclotomicField(6))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([3,0,1,0]))

pari: [g,chi] = znchar(Mod(1151,4830))

## Basic properties

 Modulus: $$4830$$ Conductor: $$21$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$6$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{21}(17,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 4830.bi

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\sqrt{-3})$$ Fixed field: $$\Q(\zeta_{21})^+$$

## Values on generators

$$(3221,967,2761,1891)$$ → $$(-1,1,e\left(\frac{1}{6}\right),1)$$

## Values

 $$-1$$ $$1$$ $$11$$ $$13$$ $$17$$ $$19$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$ $$47$$ $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 4830 }(1151,a) \;$$ at $$\;a =$$ e.g. 2