Properties

Label 4788.3415
Modulus $4788$
Conductor $4788$
Order $18$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4788, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,6,9,7]))
 
Copy content pari:[g,chi] = znchar(Mod(3415,4788))
 

Basic properties

Modulus: \(4788\)
Conductor: \(4788\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4788.iz

\(\chi_{4788}(895,\cdot)\) \(\chi_{4788}(979,\cdot)\) \(\chi_{4788}(1231,\cdot)\) \(\chi_{4788}(1903,\cdot)\) \(\chi_{4788}(3415,\cdot)\) \(\chi_{4788}(4003,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((2395,533,4105,1009)\) → \((-1,e\left(\frac{1}{3}\right),-1,e\left(\frac{7}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 4788 }(3415, a) \) \(-1\)\(1\)\(e\left(\frac{7}{18}\right)\)\(-1\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{17}{18}\right)\)\(-1\)\(-1\)\(e\left(\frac{2}{9}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4788 }(3415,a) \;\) at \(\;a = \) e.g. 2