sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([9,40]))
pari:[g,chi] = znchar(Mod(258,475))
| Modulus: | \(475\) | |
| Conductor: | \(475\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{475}(83,\cdot)\)
\(\chi_{475}(87,\cdot)\)
\(\chi_{475}(102,\cdot)\)
\(\chi_{475}(163,\cdot)\)
\(\chi_{475}(178,\cdot)\)
\(\chi_{475}(197,\cdot)\)
\(\chi_{475}(258,\cdot)\)
\(\chi_{475}(273,\cdot)\)
\(\chi_{475}(277,\cdot)\)
\(\chi_{475}(292,\cdot)\)
\(\chi_{475}(353,\cdot)\)
\(\chi_{475}(372,\cdot)\)
\(\chi_{475}(387,\cdot)\)
\(\chi_{475}(448,\cdot)\)
\(\chi_{475}(463,\cdot)\)
\(\chi_{475}(467,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((77,401)\) → \((e\left(\frac{3}{20}\right),e\left(\frac{2}{3}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 475 }(258, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(-i\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{11}{60}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)