sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([12,20]))
pari:[g,chi] = znchar(Mod(106,475))
| Modulus: | \(475\) | |
| Conductor: | \(475\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(15\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{475}(11,\cdot)\)
\(\chi_{475}(106,\cdot)\)
\(\chi_{475}(121,\cdot)\)
\(\chi_{475}(216,\cdot)\)
\(\chi_{475}(296,\cdot)\)
\(\chi_{475}(311,\cdot)\)
\(\chi_{475}(391,\cdot)\)
\(\chi_{475}(406,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((77,401)\) → \((e\left(\frac{2}{5}\right),e\left(\frac{2}{3}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 475 }(106, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)