sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4693, base_ring=CyclotomicField(342))
M = H._module
chi = DirichletCharacter(H, M([171,34]))
pari:[g,chi] = znchar(Mod(480,4693))
| Modulus: | \(4693\) | |
| Conductor: | \(4693\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(342\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4693}(25,\cdot)\)
\(\chi_{4693}(142,\cdot)\)
\(\chi_{4693}(168,\cdot)\)
\(\chi_{4693}(194,\cdot)\)
\(\chi_{4693}(207,\cdot)\)
\(\chi_{4693}(233,\cdot)\)
\(\chi_{4693}(272,\cdot)\)
\(\chi_{4693}(441,\cdot)\)
\(\chi_{4693}(454,\cdot)\)
\(\chi_{4693}(480,\cdot)\)
\(\chi_{4693}(519,\cdot)\)
\(\chi_{4693}(636,\cdot)\)
\(\chi_{4693}(662,\cdot)\)
\(\chi_{4693}(688,\cdot)\)
\(\chi_{4693}(701,\cdot)\)
\(\chi_{4693}(727,\cdot)\)
\(\chi_{4693}(766,\cdot)\)
\(\chi_{4693}(883,\cdot)\)
\(\chi_{4693}(909,\cdot)\)
\(\chi_{4693}(935,\cdot)\)
\(\chi_{4693}(948,\cdot)\)
\(\chi_{4693}(974,\cdot)\)
\(\chi_{4693}(1013,\cdot)\)
\(\chi_{4693}(1130,\cdot)\)
\(\chi_{4693}(1156,\cdot)\)
\(\chi_{4693}(1195,\cdot)\)
\(\chi_{4693}(1221,\cdot)\)
\(\chi_{4693}(1260,\cdot)\)
\(\chi_{4693}(1377,\cdot)\)
\(\chi_{4693}(1403,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1445,3251)\) → \((-1,e\left(\frac{17}{171}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 4693 }(480, a) \) |
\(1\) | \(1\) | \(e\left(\frac{205}{342}\right)\) | \(e\left(\frac{140}{171}\right)\) | \(e\left(\frac{34}{171}\right)\) | \(e\left(\frac{193}{342}\right)\) | \(e\left(\frac{143}{342}\right)\) | \(e\left(\frac{47}{114}\right)\) | \(e\left(\frac{91}{114}\right)\) | \(e\left(\frac{109}{171}\right)\) | \(e\left(\frac{28}{171}\right)\) | \(e\left(\frac{73}{114}\right)\) |
sage:chi.jacobi_sum(n)