sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(465, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([10,5,16]))
pari:[g,chi] = znchar(Mod(2,465))
Modulus: | \(465\) | |
Conductor: | \(465\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(20\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{465}(2,\cdot)\)
\(\chi_{465}(8,\cdot)\)
\(\chi_{465}(47,\cdot)\)
\(\chi_{465}(128,\cdot)\)
\(\chi_{465}(188,\cdot)\)
\(\chi_{465}(233,\cdot)\)
\(\chi_{465}(287,\cdot)\)
\(\chi_{465}(407,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((311,187,406)\) → \((-1,i,e\left(\frac{4}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 465 }(2, a) \) |
\(1\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)