Properties

Label 4641.1171
Modulus $4641$
Conductor $119$
Order $24$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4641, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,8,0,9]))
 
Copy content pari:[g,chi] = znchar(Mod(1171,4641))
 

Basic properties

Modulus: \(4641\)
Conductor: \(119\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{119}(100,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4641.kp

\(\chi_{4641}(508,\cdot)\) \(\chi_{4641}(1171,\cdot)\) \(\chi_{4641}(1600,\cdot)\) \(\chi_{4641}(2263,\cdot)\) \(\chi_{4641}(3238,\cdot)\) \(\chi_{4641}(3511,\cdot)\) \(\chi_{4641}(3901,\cdot)\) \(\chi_{4641}(4174,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.2296127442650479958000916502307873630417.1

Values on generators

\((3095,3979,3928,547)\) → \((1,e\left(\frac{1}{3}\right),1,e\left(\frac{3}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(16\)\(19\)\(20\)\(22\)
\( \chi_{ 4641 }(1171, a) \) \(1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{13}{24}\right)\)\(-i\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{7}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4641 }(1171,a) \;\) at \(\;a = \) e.g. 2