sage: H = DirichletGroup(46208)
pari: g = idealstar(,46208,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 21888 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{5472}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{46208}(28159,\cdot)$, $\chi_{46208}(36101,\cdot)$, $\chi_{46208}(14081,\cdot)$ |
First 32 of 21888 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{46208}(1,\cdot)\) | 46208.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{46208}(3,\cdot)\) | 46208.fm | 5472 | yes | \(1\) | \(1\) | \(e\left(\frac{1507}{5472}\right)\) | \(e\left(\frac{2113}{5472}\right)\) | \(e\left(\frac{367}{912}\right)\) | \(e\left(\frac{1507}{2736}\right)\) | \(e\left(\frac{1687}{1824}\right)\) | \(e\left(\frac{671}{5472}\right)\) | \(e\left(\frac{905}{1368}\right)\) | \(e\left(\frac{655}{1368}\right)\) | \(e\left(\frac{3709}{5472}\right)\) | \(e\left(\frac{415}{2736}\right)\) |
\(\chi_{46208}(5,\cdot)\) | 46208.fl | 5472 | yes | \(1\) | \(1\) | \(e\left(\frac{2113}{5472}\right)\) | \(e\left(\frac{2251}{5472}\right)\) | \(e\left(\frac{61}{912}\right)\) | \(e\left(\frac{2113}{2736}\right)\) | \(e\left(\frac{1549}{1824}\right)\) | \(e\left(\frac{3557}{5472}\right)\) | \(e\left(\frac{1091}{1368}\right)\) | \(e\left(\frac{253}{1368}\right)\) | \(e\left(\frac{2479}{5472}\right)\) | \(e\left(\frac{1309}{2736}\right)\) |
\(\chi_{46208}(7,\cdot)\) | 46208.eu | 912 | no | \(-1\) | \(1\) | \(e\left(\frac{367}{912}\right)\) | \(e\left(\frac{61}{912}\right)\) | \(e\left(\frac{63}{152}\right)\) | \(e\left(\frac{367}{456}\right)\) | \(e\left(\frac{243}{304}\right)\) | \(e\left(\frac{899}{912}\right)\) | \(e\left(\frac{107}{228}\right)\) | \(e\left(\frac{199}{228}\right)\) | \(e\left(\frac{745}{912}\right)\) | \(e\left(\frac{415}{456}\right)\) |
\(\chi_{46208}(9,\cdot)\) | 46208.fh | 2736 | no | \(1\) | \(1\) | \(e\left(\frac{1507}{2736}\right)\) | \(e\left(\frac{2113}{2736}\right)\) | \(e\left(\frac{367}{456}\right)\) | \(e\left(\frac{139}{1368}\right)\) | \(e\left(\frac{775}{912}\right)\) | \(e\left(\frac{671}{2736}\right)\) | \(e\left(\frac{221}{684}\right)\) | \(e\left(\frac{655}{684}\right)\) | \(e\left(\frac{973}{2736}\right)\) | \(e\left(\frac{415}{1368}\right)\) |
\(\chi_{46208}(11,\cdot)\) | 46208.ff | 1824 | yes | \(-1\) | \(1\) | \(e\left(\frac{1687}{1824}\right)\) | \(e\left(\frac{1549}{1824}\right)\) | \(e\left(\frac{243}{304}\right)\) | \(e\left(\frac{775}{912}\right)\) | \(e\left(\frac{427}{608}\right)\) | \(e\left(\frac{1763}{1824}\right)\) | \(e\left(\frac{353}{456}\right)\) | \(e\left(\frac{355}{456}\right)\) | \(e\left(\frac{1321}{1824}\right)\) | \(e\left(\frac{211}{912}\right)\) |
\(\chi_{46208}(13,\cdot)\) | 46208.fn | 5472 | yes | \(-1\) | \(1\) | \(e\left(\frac{671}{5472}\right)\) | \(e\left(\frac{3557}{5472}\right)\) | \(e\left(\frac{899}{912}\right)\) | \(e\left(\frac{671}{2736}\right)\) | \(e\left(\frac{1763}{1824}\right)\) | \(e\left(\frac{2875}{5472}\right)\) | \(e\left(\frac{1057}{1368}\right)\) | \(e\left(\frac{731}{1368}\right)\) | \(e\left(\frac{593}{5472}\right)\) | \(e\left(\frac{35}{2736}\right)\) |
\(\chi_{46208}(15,\cdot)\) | 46208.fa | 1368 | no | \(1\) | \(1\) | \(e\left(\frac{905}{1368}\right)\) | \(e\left(\frac{1091}{1368}\right)\) | \(e\left(\frac{107}{228}\right)\) | \(e\left(\frac{221}{684}\right)\) | \(e\left(\frac{353}{456}\right)\) | \(e\left(\frac{1057}{1368}\right)\) | \(e\left(\frac{157}{342}\right)\) | \(e\left(\frac{227}{342}\right)\) | \(e\left(\frac{179}{1368}\right)\) | \(e\left(\frac{431}{684}\right)\) |
\(\chi_{46208}(17,\cdot)\) | 46208.fb | 1368 | no | \(1\) | \(1\) | \(e\left(\frac{655}{1368}\right)\) | \(e\left(\frac{253}{1368}\right)\) | \(e\left(\frac{199}{228}\right)\) | \(e\left(\frac{655}{684}\right)\) | \(e\left(\frac{355}{456}\right)\) | \(e\left(\frac{731}{1368}\right)\) | \(e\left(\frac{227}{342}\right)\) | \(e\left(\frac{289}{342}\right)\) | \(e\left(\frac{481}{1368}\right)\) | \(e\left(\frac{499}{684}\right)\) |
\(\chi_{46208}(21,\cdot)\) | 46208.fn | 5472 | yes | \(-1\) | \(1\) | \(e\left(\frac{3709}{5472}\right)\) | \(e\left(\frac{2479}{5472}\right)\) | \(e\left(\frac{745}{912}\right)\) | \(e\left(\frac{973}{2736}\right)\) | \(e\left(\frac{1321}{1824}\right)\) | \(e\left(\frac{593}{5472}\right)\) | \(e\left(\frac{179}{1368}\right)\) | \(e\left(\frac{481}{1368}\right)\) | \(e\left(\frac{2707}{5472}\right)\) | \(e\left(\frac{169}{2736}\right)\) |
\(\chi_{46208}(23,\cdot)\) | 46208.fj | 2736 | no | \(-1\) | \(1\) | \(e\left(\frac{415}{2736}\right)\) | \(e\left(\frac{1309}{2736}\right)\) | \(e\left(\frac{415}{456}\right)\) | \(e\left(\frac{415}{1368}\right)\) | \(e\left(\frac{211}{912}\right)\) | \(e\left(\frac{35}{2736}\right)\) | \(e\left(\frac{431}{684}\right)\) | \(e\left(\frac{499}{684}\right)\) | \(e\left(\frac{169}{2736}\right)\) | \(e\left(\frac{1303}{1368}\right)\) |
\(\chi_{46208}(25,\cdot)\) | 46208.fh | 2736 | no | \(1\) | \(1\) | \(e\left(\frac{2113}{2736}\right)\) | \(e\left(\frac{2251}{2736}\right)\) | \(e\left(\frac{61}{456}\right)\) | \(e\left(\frac{745}{1368}\right)\) | \(e\left(\frac{637}{912}\right)\) | \(e\left(\frac{821}{2736}\right)\) | \(e\left(\frac{407}{684}\right)\) | \(e\left(\frac{253}{684}\right)\) | \(e\left(\frac{2479}{2736}\right)\) | \(e\left(\frac{1309}{1368}\right)\) |
\(\chi_{46208}(27,\cdot)\) | 46208.fe | 1824 | yes | \(1\) | \(1\) | \(e\left(\frac{1507}{1824}\right)\) | \(e\left(\frac{289}{1824}\right)\) | \(e\left(\frac{63}{304}\right)\) | \(e\left(\frac{595}{912}\right)\) | \(e\left(\frac{471}{608}\right)\) | \(e\left(\frac{671}{1824}\right)\) | \(e\left(\frac{449}{456}\right)\) | \(e\left(\frac{199}{456}\right)\) | \(e\left(\frac{61}{1824}\right)\) | \(e\left(\frac{415}{912}\right)\) |
\(\chi_{46208}(29,\cdot)\) | 46208.fn | 5472 | yes | \(-1\) | \(1\) | \(e\left(\frac{2411}{5472}\right)\) | \(e\left(\frac{2057}{5472}\right)\) | \(e\left(\frac{815}{912}\right)\) | \(e\left(\frac{2411}{2736}\right)\) | \(e\left(\frac{1439}{1824}\right)\) | \(e\left(\frac{55}{5472}\right)\) | \(e\left(\frac{1117}{1368}\right)\) | \(e\left(\frac{1175}{1368}\right)\) | \(e\left(\frac{1829}{5472}\right)\) | \(e\left(\frac{191}{2736}\right)\) |
\(\chi_{46208}(31,\cdot)\) | 46208.dq | 228 | no | \(1\) | \(1\) | \(e\left(\frac{91}{228}\right)\) | \(e\left(\frac{181}{228}\right)\) | \(e\left(\frac{17}{19}\right)\) | \(e\left(\frac{91}{114}\right)\) | \(e\left(\frac{9}{76}\right)\) | \(e\left(\frac{53}{228}\right)\) | \(e\left(\frac{11}{57}\right)\) | \(e\left(\frac{13}{57}\right)\) | \(e\left(\frac{67}{228}\right)\) | \(e\left(\frac{20}{57}\right)\) |
\(\chi_{46208}(33,\cdot)\) | 46208.eq | 684 | no | \(-1\) | \(1\) | \(e\left(\frac{137}{684}\right)\) | \(e\left(\frac{161}{684}\right)\) | \(e\left(\frac{23}{114}\right)\) | \(e\left(\frac{137}{342}\right)\) | \(e\left(\frac{143}{228}\right)\) | \(e\left(\frac{61}{684}\right)\) | \(e\left(\frac{149}{342}\right)\) | \(e\left(\frac{44}{171}\right)\) | \(e\left(\frac{275}{684}\right)\) | \(e\left(\frac{131}{342}\right)\) |
\(\chi_{46208}(35,\cdot)\) | 46208.fk | 5472 | yes | \(-1\) | \(1\) | \(e\left(\frac{4315}{5472}\right)\) | \(e\left(\frac{2617}{5472}\right)\) | \(e\left(\frac{439}{912}\right)\) | \(e\left(\frac{1579}{2736}\right)\) | \(e\left(\frac{1183}{1824}\right)\) | \(e\left(\frac{3479}{5472}\right)\) | \(e\left(\frac{365}{1368}\right)\) | \(e\left(\frac{79}{1368}\right)\) | \(e\left(\frac{1477}{5472}\right)\) | \(e\left(\frac{1063}{2736}\right)\) |
\(\chi_{46208}(37,\cdot)\) | 46208.eo | 608 | yes | \(-1\) | \(1\) | \(e\left(\frac{385}{608}\right)\) | \(e\left(\frac{187}{608}\right)\) | \(e\left(\frac{167}{304}\right)\) | \(e\left(\frac{81}{304}\right)\) | \(e\left(\frac{503}{608}\right)\) | \(e\left(\frac{5}{608}\right)\) | \(e\left(\frac{143}{152}\right)\) | \(e\left(\frac{93}{152}\right)\) | \(e\left(\frac{111}{608}\right)\) | \(e\left(\frac{45}{304}\right)\) |
\(\chi_{46208}(39,\cdot)\) | 46208.dy | 304 | no | \(-1\) | \(1\) | \(e\left(\frac{121}{304}\right)\) | \(e\left(\frac{11}{304}\right)\) | \(e\left(\frac{59}{152}\right)\) | \(e\left(\frac{121}{152}\right)\) | \(e\left(\frac{271}{304}\right)\) | \(e\left(\frac{197}{304}\right)\) | \(e\left(\frac{33}{76}\right)\) | \(e\left(\frac{1}{76}\right)\) | \(e\left(\frac{239}{304}\right)\) | \(e\left(\frac{25}{152}\right)\) |
\(\chi_{46208}(41,\cdot)\) | 46208.fi | 2736 | no | \(-1\) | \(1\) | \(e\left(\frac{119}{2736}\right)\) | \(e\left(\frac{1061}{2736}\right)\) | \(e\left(\frac{347}{456}\right)\) | \(e\left(\frac{119}{1368}\right)\) | \(e\left(\frac{611}{912}\right)\) | \(e\left(\frac{1411}{2736}\right)\) | \(e\left(\frac{295}{684}\right)\) | \(e\left(\frac{359}{684}\right)\) | \(e\left(\frac{2201}{2736}\right)\) | \(e\left(\frac{995}{1368}\right)\) |
\(\chi_{46208}(43,\cdot)\) | 46208.fk | 5472 | yes | \(-1\) | \(1\) | \(e\left(\frac{1933}{5472}\right)\) | \(e\left(\frac{991}{5472}\right)\) | \(e\left(\frac{337}{912}\right)\) | \(e\left(\frac{1933}{2736}\right)\) | \(e\left(\frac{73}{1824}\right)\) | \(e\left(\frac{3377}{5472}\right)\) | \(e\left(\frac{731}{1368}\right)\) | \(e\left(\frac{1009}{1368}\right)\) | \(e\left(\frac{3955}{5472}\right)\) | \(e\left(\frac{1057}{2736}\right)\) |
\(\chi_{46208}(45,\cdot)\) | 46208.fd | 1824 | yes | \(1\) | \(1\) | \(e\left(\frac{1709}{1824}\right)\) | \(e\left(\frac{335}{1824}\right)\) | \(e\left(\frac{265}{304}\right)\) | \(e\left(\frac{797}{912}\right)\) | \(e\left(\frac{425}{608}\right)\) | \(e\left(\frac{1633}{1824}\right)\) | \(e\left(\frac{55}{456}\right)\) | \(e\left(\frac{65}{456}\right)\) | \(e\left(\frac{1475}{1824}\right)\) | \(e\left(\frac{713}{912}\right)\) |
\(\chi_{46208}(47,\cdot)\) | 46208.ez | 1368 | no | \(-1\) | \(1\) | \(e\left(\frac{263}{1368}\right)\) | \(e\left(\frac{17}{1368}\right)\) | \(e\left(\frac{149}{228}\right)\) | \(e\left(\frac{263}{684}\right)\) | \(e\left(\frac{59}{456}\right)\) | \(e\left(\frac{871}{1368}\right)\) | \(e\left(\frac{35}{171}\right)\) | \(e\left(\frac{233}{342}\right)\) | \(e\left(\frac{1157}{1368}\right)\) | \(e\left(\frac{581}{684}\right)\) |
\(\chi_{46208}(49,\cdot)\) | 46208.ej | 456 | no | \(1\) | \(1\) | \(e\left(\frac{367}{456}\right)\) | \(e\left(\frac{61}{456}\right)\) | \(e\left(\frac{63}{76}\right)\) | \(e\left(\frac{139}{228}\right)\) | \(e\left(\frac{91}{152}\right)\) | \(e\left(\frac{443}{456}\right)\) | \(e\left(\frac{107}{114}\right)\) | \(e\left(\frac{85}{114}\right)\) | \(e\left(\frac{289}{456}\right)\) | \(e\left(\frac{187}{228}\right)\) |
\(\chi_{46208}(51,\cdot)\) | 46208.fm | 5472 | yes | \(1\) | \(1\) | \(e\left(\frac{4127}{5472}\right)\) | \(e\left(\frac{3125}{5472}\right)\) | \(e\left(\frac{251}{912}\right)\) | \(e\left(\frac{1391}{2736}\right)\) | \(e\left(\frac{1283}{1824}\right)\) | \(e\left(\frac{3595}{5472}\right)\) | \(e\left(\frac{445}{1368}\right)\) | \(e\left(\frac{443}{1368}\right)\) | \(e\left(\frac{161}{5472}\right)\) | \(e\left(\frac{2411}{2736}\right)\) |
\(\chi_{46208}(53,\cdot)\) | 46208.fn | 5472 | yes | \(-1\) | \(1\) | \(e\left(\frac{1109}{5472}\right)\) | \(e\left(\frac{2519}{5472}\right)\) | \(e\left(\frac{881}{912}\right)\) | \(e\left(\frac{1109}{2736}\right)\) | \(e\left(\frac{65}{1824}\right)\) | \(e\left(\frac{1033}{5472}\right)\) | \(e\left(\frac{907}{1368}\right)\) | \(e\left(\frac{305}{1368}\right)\) | \(e\left(\frac{923}{5472}\right)\) | \(e\left(\frac{1697}{2736}\right)\) |
\(\chi_{46208}(55,\cdot)\) | 46208.fj | 2736 | no | \(-1\) | \(1\) | \(e\left(\frac{851}{2736}\right)\) | \(e\left(\frac{713}{2736}\right)\) | \(e\left(\frac{395}{456}\right)\) | \(e\left(\frac{851}{1368}\right)\) | \(e\left(\frac{503}{912}\right)\) | \(e\left(\frac{1687}{2736}\right)\) | \(e\left(\frac{391}{684}\right)\) | \(e\left(\frac{659}{684}\right)\) | \(e\left(\frac{485}{2736}\right)\) | \(e\left(\frac{971}{1368}\right)\) |
\(\chi_{46208}(59,\cdot)\) | 46208.fm | 5472 | yes | \(1\) | \(1\) | \(e\left(\frac{3601}{5472}\right)\) | \(e\left(\frac{1723}{5472}\right)\) | \(e\left(\frac{181}{912}\right)\) | \(e\left(\frac{865}{2736}\right)\) | \(e\left(\frac{1165}{1824}\right)\) | \(e\left(\frac{485}{5472}\right)\) | \(e\left(\frac{1331}{1368}\right)\) | \(e\left(\frac{661}{1368}\right)\) | \(e\left(\frac{4687}{5472}\right)\) | \(e\left(\frac{565}{2736}\right)\) |
\(\chi_{46208}(61,\cdot)\) | 46208.fl | 5472 | yes | \(1\) | \(1\) | \(e\left(\frac{947}{5472}\right)\) | \(e\left(\frac{17}{5472}\right)\) | \(e\left(\frac{263}{912}\right)\) | \(e\left(\frac{947}{2736}\right)\) | \(e\left(\frac{1655}{1824}\right)\) | \(e\left(\frac{2239}{5472}\right)\) | \(e\left(\frac{241}{1368}\right)\) | \(e\left(\frac{575}{1368}\right)\) | \(e\left(\frac{2525}{5472}\right)\) | \(e\left(\frac{1607}{2736}\right)\) |
\(\chi_{46208}(63,\cdot)\) | 46208.ee | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{163}{171}\right)\) | \(e\left(\frac{287}{342}\right)\) | \(e\left(\frac{25}{114}\right)\) | \(e\left(\frac{155}{171}\right)\) | \(e\left(\frac{37}{57}\right)\) | \(e\left(\frac{79}{342}\right)\) | \(e\left(\frac{271}{342}\right)\) | \(e\left(\frac{142}{171}\right)\) | \(e\left(\frac{59}{342}\right)\) | \(e\left(\frac{73}{342}\right)\) |
\(\chi_{46208}(65,\cdot)\) | 46208.dd | 114 | no | \(-1\) | \(1\) | \(e\left(\frac{29}{57}\right)\) | \(e\left(\frac{7}{114}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{1}{57}\right)\) | \(e\left(\frac{31}{38}\right)\) | \(e\left(\frac{10}{57}\right)\) | \(e\left(\frac{65}{114}\right)\) | \(e\left(\frac{41}{57}\right)\) | \(e\left(\frac{32}{57}\right)\) | \(e\left(\frac{28}{57}\right)\) |
\(\chi_{46208}(67,\cdot)\) | 46208.fm | 5472 | yes | \(1\) | \(1\) | \(e\left(\frac{3347}{5472}\right)\) | \(e\left(\frac{401}{5472}\right)\) | \(e\left(\frac{383}{912}\right)\) | \(e\left(\frac{611}{2736}\right)\) | \(e\left(\frac{359}{1824}\right)\) | \(e\left(\frac{3727}{5472}\right)\) | \(e\left(\frac{937}{1368}\right)\) | \(e\left(\frac{527}{1368}\right)\) | \(e\left(\frac{173}{5472}\right)\) | \(e\left(\frac{1775}{2736}\right)\) |