sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4620, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([5,5,5,0,6]))
pari:[g,chi] = znchar(Mod(2759,4620))
\(\chi_{4620}(1499,\cdot)\)
\(\chi_{4620}(1919,\cdot)\)
\(\chi_{4620}(2759,\cdot)\)
\(\chi_{4620}(4019,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2311,1541,3697,661,2521)\) → \((-1,-1,-1,1,e\left(\frac{3}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) | \(47\) |
| \( \chi_{ 4620 }(2759, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(-1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(1\) | \(e\left(\frac{3}{10}\right)\) |
sage:chi.jacobi_sum(n)