Properties

Label 459.31
Modulus $459$
Conductor $459$
Order $144$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(144)) M = H._module chi = DirichletCharacter(H, M([16,81]))
 
Copy content pari:[g,chi] = znchar(Mod(31,459))
 

Basic properties

Modulus: \(459\)
Conductor: \(459\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(144\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 459.bc

\(\chi_{459}(7,\cdot)\) \(\chi_{459}(22,\cdot)\) \(\chi_{459}(31,\cdot)\) \(\chi_{459}(40,\cdot)\) \(\chi_{459}(58,\cdot)\) \(\chi_{459}(61,\cdot)\) \(\chi_{459}(79,\cdot)\) \(\chi_{459}(88,\cdot)\) \(\chi_{459}(97,\cdot)\) \(\chi_{459}(112,\cdot)\) \(\chi_{459}(124,\cdot)\) \(\chi_{459}(130,\cdot)\) \(\chi_{459}(133,\cdot)\) \(\chi_{459}(139,\cdot)\) \(\chi_{459}(142,\cdot)\) \(\chi_{459}(148,\cdot)\) \(\chi_{459}(160,\cdot)\) \(\chi_{459}(175,\cdot)\) \(\chi_{459}(184,\cdot)\) \(\chi_{459}(193,\cdot)\) \(\chi_{459}(211,\cdot)\) \(\chi_{459}(214,\cdot)\) \(\chi_{459}(232,\cdot)\) \(\chi_{459}(241,\cdot)\) \(\chi_{459}(250,\cdot)\) \(\chi_{459}(265,\cdot)\) \(\chi_{459}(277,\cdot)\) \(\chi_{459}(283,\cdot)\) \(\chi_{459}(286,\cdot)\) \(\chi_{459}(292,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{144})$
Fixed field: Number field defined by a degree 144 polynomial (not computed)

Values on generators

\((137,190)\) → \((e\left(\frac{1}{9}\right),e\left(\frac{9}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 459 }(31, a) \) \(-1\)\(1\)\(e\left(\frac{71}{72}\right)\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{53}{144}\right)\)\(e\left(\frac{139}{144}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{17}{48}\right)\)\(e\left(\frac{55}{144}\right)\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{137}{144}\right)\)\(e\left(\frac{17}{18}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 459 }(31,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 459 }(31,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 459 }(31,·),\chi_{ 459 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 459 }(31,·)) \;\) at \(\; a,b = \) e.g. 1,2