sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(459, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([4,63]))
pari:[g,chi] = znchar(Mod(2,459))
Modulus: | \(459\) | |
Conductor: | \(459\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(72\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{459}(2,\cdot)\)
\(\chi_{459}(32,\cdot)\)
\(\chi_{459}(59,\cdot)\)
\(\chi_{459}(77,\cdot)\)
\(\chi_{459}(83,\cdot)\)
\(\chi_{459}(104,\cdot)\)
\(\chi_{459}(110,\cdot)\)
\(\chi_{459}(128,\cdot)\)
\(\chi_{459}(155,\cdot)\)
\(\chi_{459}(185,\cdot)\)
\(\chi_{459}(212,\cdot)\)
\(\chi_{459}(230,\cdot)\)
\(\chi_{459}(236,\cdot)\)
\(\chi_{459}(257,\cdot)\)
\(\chi_{459}(263,\cdot)\)
\(\chi_{459}(281,\cdot)\)
\(\chi_{459}(308,\cdot)\)
\(\chi_{459}(338,\cdot)\)
\(\chi_{459}(365,\cdot)\)
\(\chi_{459}(383,\cdot)\)
\(\chi_{459}(389,\cdot)\)
\(\chi_{459}(410,\cdot)\)
\(\chi_{459}(416,\cdot)\)
\(\chi_{459}(434,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((137,190)\) → \((e\left(\frac{1}{18}\right),e\left(\frac{7}{8}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 459 }(2, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{2}{9}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)