Properties

Label 459.163
Modulus $459$
Conductor $17$
Order $16$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,3]))
 
Copy content pari:[g,chi] = znchar(Mod(163,459))
 

Basic properties

Modulus: \(459\)
Conductor: \(17\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{17}(10,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 459.q

\(\chi_{459}(28,\cdot)\) \(\chi_{459}(82,\cdot)\) \(\chi_{459}(109,\cdot)\) \(\chi_{459}(163,\cdot)\) \(\chi_{459}(190,\cdot)\) \(\chi_{459}(244,\cdot)\) \(\chi_{459}(352,\cdot)\) \(\chi_{459}(379,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: Number field defined by a degree 16 polynomial

Values on generators

\((137,190)\) → \((1,e\left(\frac{3}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 459 }(163, a) \) \(-1\)\(1\)\(e\left(\frac{5}{8}\right)\)\(i\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(-i\)\(e\left(\frac{11}{16}\right)\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 459 }(163,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 459 }(163,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 459 }(163,·),\chi_{ 459 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 459 }(163,·)) \;\) at \(\; a,b = \) e.g. 1,2