Properties

Label 4563.46
Modulus $4563$
Conductor $1521$
Order $156$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4563, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([104,131]))
 
Copy content pari:[g,chi] = znchar(Mod(46,4563))
 

Basic properties

Modulus: \(4563\)
Conductor: \(1521\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1521}(1060,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4563.cx

\(\chi_{4563}(37,\cdot)\) \(\chi_{4563}(46,\cdot)\) \(\chi_{4563}(145,\cdot)\) \(\chi_{4563}(370,\cdot)\) \(\chi_{4563}(388,\cdot)\) \(\chi_{4563}(397,\cdot)\) \(\chi_{4563}(496,\cdot)\) \(\chi_{4563}(721,\cdot)\) \(\chi_{4563}(739,\cdot)\) \(\chi_{4563}(748,\cdot)\) \(\chi_{4563}(847,\cdot)\) \(\chi_{4563}(1072,\cdot)\) \(\chi_{4563}(1090,\cdot)\) \(\chi_{4563}(1099,\cdot)\) \(\chi_{4563}(1198,\cdot)\) \(\chi_{4563}(1423,\cdot)\) \(\chi_{4563}(1450,\cdot)\) \(\chi_{4563}(1549,\cdot)\) \(\chi_{4563}(1774,\cdot)\) \(\chi_{4563}(1792,\cdot)\) \(\chi_{4563}(1801,\cdot)\) \(\chi_{4563}(1900,\cdot)\) \(\chi_{4563}(2125,\cdot)\) \(\chi_{4563}(2143,\cdot)\) \(\chi_{4563}(2152,\cdot)\) \(\chi_{4563}(2251,\cdot)\) \(\chi_{4563}(2476,\cdot)\) \(\chi_{4563}(2494,\cdot)\) \(\chi_{4563}(2503,\cdot)\) \(\chi_{4563}(2602,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((677,3889)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{131}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(14\)\(16\)\(17\)
\( \chi_{ 4563 }(46, a) \) \(-1\)\(1\)\(e\left(\frac{79}{156}\right)\)\(e\left(\frac{1}{78}\right)\)\(e\left(\frac{139}{156}\right)\)\(e\left(\frac{27}{52}\right)\)\(e\left(\frac{27}{52}\right)\)\(e\left(\frac{31}{78}\right)\)\(e\left(\frac{25}{156}\right)\)\(e\left(\frac{1}{39}\right)\)\(e\left(\frac{1}{39}\right)\)\(e\left(\frac{47}{78}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4563 }(46,a) \;\) at \(\;a = \) e.g. 2