![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4563, base_ring=CyclotomicField(468))
M = H._module
chi = DirichletCharacter(H, M([442,183]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4563, base_ring=CyclotomicField(468))
M = H._module
chi = DirichletCharacter(H, M([442,183]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(392,4563))
        pari:[g,chi] = znchar(Mod(392,4563))
         
     
    
  
   | Modulus: | \(4563\) |  | 
   | Conductor: | \(4563\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(468\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{4563}(20,\cdot)\)
  \(\chi_{4563}(41,\cdot)\)
  \(\chi_{4563}(50,\cdot)\)
  \(\chi_{4563}(110,\cdot)\)
  \(\chi_{4563}(137,\cdot)\)
  \(\chi_{4563}(158,\cdot)\)
  \(\chi_{4563}(167,\cdot)\)
  \(\chi_{4563}(227,\cdot)\)
  \(\chi_{4563}(254,\cdot)\)
  \(\chi_{4563}(275,\cdot)\)
  \(\chi_{4563}(284,\cdot)\)
  \(\chi_{4563}(344,\cdot)\)
  \(\chi_{4563}(371,\cdot)\)
  \(\chi_{4563}(392,\cdot)\)
  \(\chi_{4563}(401,\cdot)\)
  \(\chi_{4563}(461,\cdot)\)
  \(\chi_{4563}(509,\cdot)\)
  \(\chi_{4563}(518,\cdot)\)
  \(\chi_{4563}(578,\cdot)\)
  \(\chi_{4563}(605,\cdot)\)
  \(\chi_{4563}(626,\cdot)\)
  \(\chi_{4563}(635,\cdot)\)
  \(\chi_{4563}(722,\cdot)\)
  \(\chi_{4563}(743,\cdot)\)
  \(\chi_{4563}(752,\cdot)\)
  \(\chi_{4563}(812,\cdot)\)
  \(\chi_{4563}(839,\cdot)\)
  \(\chi_{4563}(860,\cdot)\)
  \(\chi_{4563}(869,\cdot)\)
  \(\chi_{4563}(929,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((677,3889)\) → \((e\left(\frac{17}{18}\right),e\left(\frac{61}{156}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) | 
    
    
      | \( \chi_{ 4563 }(392, a) \) | \(1\) | \(1\) | \(e\left(\frac{157}{468}\right)\) | \(e\left(\frac{157}{234}\right)\) | \(e\left(\frac{113}{468}\right)\) | \(e\left(\frac{445}{468}\right)\) | \(e\left(\frac{1}{156}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{259}{468}\right)\) | \(e\left(\frac{67}{234}\right)\) | \(e\left(\frac{40}{117}\right)\) | \(e\left(\frac{10}{39}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)