Properties

Label 4563.2344
Modulus $4563$
Conductor $351$
Order $18$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4563, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([14,3]))
 
Copy content pari:[g,chi] = znchar(Mod(2344,4563))
 

Basic properties

Modulus: \(4563\)
Conductor: \(351\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{351}(238,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4563.bo

\(\chi_{4563}(823,\cdot)\) \(\chi_{4563}(1375,\cdot)\) \(\chi_{4563}(2344,\cdot)\) \(\chi_{4563}(2896,\cdot)\) \(\chi_{4563}(3865,\cdot)\) \(\chi_{4563}(4417,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((677,3889)\) → \((e\left(\frac{7}{9}\right),e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(14\)\(16\)\(17\)
\( \chi_{ 4563 }(2344, a) \) \(1\)\(1\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{7}{9}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4563 }(2344,a) \;\) at \(\;a = \) e.g. 2