sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4563, base_ring=CyclotomicField(234))
M = H._module
chi = DirichletCharacter(H, M([182,105]))
pari:[g,chi] = znchar(Mod(1453,4563))
Modulus: | \(4563\) | |
Conductor: | \(4563\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(234\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4563}(43,\cdot)\)
\(\chi_{4563}(49,\cdot)\)
\(\chi_{4563}(160,\cdot)\)
\(\chi_{4563}(166,\cdot)\)
\(\chi_{4563}(277,\cdot)\)
\(\chi_{4563}(283,\cdot)\)
\(\chi_{4563}(394,\cdot)\)
\(\chi_{4563}(400,\cdot)\)
\(\chi_{4563}(511,\cdot)\)
\(\chi_{4563}(517,\cdot)\)
\(\chi_{4563}(628,\cdot)\)
\(\chi_{4563}(634,\cdot)\)
\(\chi_{4563}(745,\cdot)\)
\(\chi_{4563}(751,\cdot)\)
\(\chi_{4563}(862,\cdot)\)
\(\chi_{4563}(979,\cdot)\)
\(\chi_{4563}(985,\cdot)\)
\(\chi_{4563}(1096,\cdot)\)
\(\chi_{4563}(1102,\cdot)\)
\(\chi_{4563}(1213,\cdot)\)
\(\chi_{4563}(1219,\cdot)\)
\(\chi_{4563}(1336,\cdot)\)
\(\chi_{4563}(1447,\cdot)\)
\(\chi_{4563}(1453,\cdot)\)
\(\chi_{4563}(1564,\cdot)\)
\(\chi_{4563}(1570,\cdot)\)
\(\chi_{4563}(1681,\cdot)\)
\(\chi_{4563}(1687,\cdot)\)
\(\chi_{4563}(1798,\cdot)\)
\(\chi_{4563}(1804,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3889)\) → \((e\left(\frac{7}{9}\right),e\left(\frac{35}{78}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 4563 }(1453, a) \) |
\(1\) | \(1\) | \(e\left(\frac{53}{234}\right)\) | \(e\left(\frac{53}{117}\right)\) | \(e\left(\frac{217}{234}\right)\) | \(e\left(\frac{107}{234}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{77}{234}\right)\) | \(e\left(\frac{80}{117}\right)\) | \(e\left(\frac{106}{117}\right)\) | \(e\left(\frac{7}{39}\right)\) |
sage:chi.jacobi_sum(n)