sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4563, base_ring=CyclotomicField(234))
M = H._module
chi = DirichletCharacter(H, M([52,135]))
pari:[g,chi] = znchar(Mod(1312,4563))
Modulus: | \(4563\) | |
Conductor: | \(4563\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(234\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4563}(25,\cdot)\)
\(\chi_{4563}(103,\cdot)\)
\(\chi_{4563}(142,\cdot)\)
\(\chi_{4563}(220,\cdot)\)
\(\chi_{4563}(259,\cdot)\)
\(\chi_{4563}(376,\cdot)\)
\(\chi_{4563}(454,\cdot)\)
\(\chi_{4563}(493,\cdot)\)
\(\chi_{4563}(571,\cdot)\)
\(\chi_{4563}(610,\cdot)\)
\(\chi_{4563}(688,\cdot)\)
\(\chi_{4563}(727,\cdot)\)
\(\chi_{4563}(805,\cdot)\)
\(\chi_{4563}(922,\cdot)\)
\(\chi_{4563}(961,\cdot)\)
\(\chi_{4563}(1039,\cdot)\)
\(\chi_{4563}(1078,\cdot)\)
\(\chi_{4563}(1156,\cdot)\)
\(\chi_{4563}(1195,\cdot)\)
\(\chi_{4563}(1273,\cdot)\)
\(\chi_{4563}(1312,\cdot)\)
\(\chi_{4563}(1390,\cdot)\)
\(\chi_{4563}(1429,\cdot)\)
\(\chi_{4563}(1507,\cdot)\)
\(\chi_{4563}(1546,\cdot)\)
\(\chi_{4563}(1624,\cdot)\)
\(\chi_{4563}(1663,\cdot)\)
\(\chi_{4563}(1741,\cdot)\)
\(\chi_{4563}(1780,\cdot)\)
\(\chi_{4563}(1897,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3889)\) → \((e\left(\frac{2}{9}\right),e\left(\frac{15}{26}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 4563 }(1312, a) \) |
\(1\) | \(1\) | \(e\left(\frac{187}{234}\right)\) | \(e\left(\frac{70}{117}\right)\) | \(e\left(\frac{71}{234}\right)\) | \(e\left(\frac{67}{234}\right)\) | \(e\left(\frac{31}{78}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{73}{234}\right)\) | \(e\left(\frac{10}{117}\right)\) | \(e\left(\frac{23}{117}\right)\) | \(e\left(\frac{22}{39}\right)\) |
sage:chi.jacobi_sum(n)