sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4563, base_ring=CyclotomicField(234))
M = H._module
chi = DirichletCharacter(H, M([52,168]))
pari:[g,chi] = znchar(Mod(1069,4563))
Modulus: | \(4563\) | |
Conductor: | \(4563\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(117\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4563}(16,\cdot)\)
\(\chi_{4563}(133,\cdot)\)
\(\chi_{4563}(139,\cdot)\)
\(\chi_{4563}(250,\cdot)\)
\(\chi_{4563}(256,\cdot)\)
\(\chi_{4563}(367,\cdot)\)
\(\chi_{4563}(373,\cdot)\)
\(\chi_{4563}(490,\cdot)\)
\(\chi_{4563}(601,\cdot)\)
\(\chi_{4563}(607,\cdot)\)
\(\chi_{4563}(718,\cdot)\)
\(\chi_{4563}(724,\cdot)\)
\(\chi_{4563}(835,\cdot)\)
\(\chi_{4563}(841,\cdot)\)
\(\chi_{4563}(952,\cdot)\)
\(\chi_{4563}(958,\cdot)\)
\(\chi_{4563}(1069,\cdot)\)
\(\chi_{4563}(1075,\cdot)\)
\(\chi_{4563}(1186,\cdot)\)
\(\chi_{4563}(1192,\cdot)\)
\(\chi_{4563}(1303,\cdot)\)
\(\chi_{4563}(1309,\cdot)\)
\(\chi_{4563}(1420,\cdot)\)
\(\chi_{4563}(1426,\cdot)\)
\(\chi_{4563}(1537,\cdot)\)
\(\chi_{4563}(1654,\cdot)\)
\(\chi_{4563}(1660,\cdot)\)
\(\chi_{4563}(1771,\cdot)\)
\(\chi_{4563}(1777,\cdot)\)
\(\chi_{4563}(1888,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3889)\) → \((e\left(\frac{2}{9}\right),e\left(\frac{28}{39}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 4563 }(1069, a) \) |
\(1\) | \(1\) | \(e\left(\frac{110}{117}\right)\) | \(e\left(\frac{103}{117}\right)\) | \(e\left(\frac{67}{117}\right)\) | \(e\left(\frac{44}{117}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{98}{117}\right)\) | \(e\left(\frac{37}{117}\right)\) | \(e\left(\frac{89}{117}\right)\) | \(e\left(\frac{2}{13}\right)\) |
sage:chi.jacobi_sum(n)