sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4560, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,0,0,9,5]))
pari:[g,chi] = znchar(Mod(1039,4560))
\(\chi_{4560}(79,\cdot)\)
\(\chi_{4560}(319,\cdot)\)
\(\chi_{4560}(1039,\cdot)\)
\(\chi_{4560}(2719,\cdot)\)
\(\chi_{4560}(2959,\cdot)\)
\(\chi_{4560}(4399,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1711,1141,3041,2737,1921)\) → \((-1,1,1,-1,e\left(\frac{5}{18}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 4560 }(1039, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) |
sage:chi.jacobi_sum(n)