sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(451, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([28,19]))
pari:[g,chi] = znchar(Mod(403,451))
| Modulus: | \(451\) | |
| Conductor: | \(451\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(40\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{451}(7,\cdot)\)
\(\chi_{451}(17,\cdot)\)
\(\chi_{451}(129,\cdot)\)
\(\chi_{451}(151,\cdot)\)
\(\chi_{451}(183,\cdot)\)
\(\chi_{451}(227,\cdot)\)
\(\chi_{451}(270,\cdot)\)
\(\chi_{451}(299,\cdot)\)
\(\chi_{451}(343,\cdot)\)
\(\chi_{451}(354,\cdot)\)
\(\chi_{451}(358,\cdot)\)
\(\chi_{451}(380,\cdot)\)
\(\chi_{451}(382,\cdot)\)
\(\chi_{451}(398,\cdot)\)
\(\chi_{451}(403,\cdot)\)
\(\chi_{451}(404,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((288,375)\) → \((e\left(\frac{7}{10}\right),e\left(\frac{19}{40}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 451 }(403, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{29}{40}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(i\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{33}{40}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)