sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(449, base_ring=CyclotomicField(448))
M = H._module
chi = DirichletCharacter(H, M([351]))
pari:[g,chi] = znchar(Mod(30,449))
| Modulus: | \(449\) | |
| Conductor: | \(449\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(448\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{449}(3,\cdot)\)
\(\chi_{449}(6,\cdot)\)
\(\chi_{449}(12,\cdot)\)
\(\chi_{449}(13,\cdot)\)
\(\chi_{449}(15,\cdot)\)
\(\chi_{449}(17,\cdot)\)
\(\chi_{449}(19,\cdot)\)
\(\chi_{449}(21,\cdot)\)
\(\chi_{449}(26,\cdot)\)
\(\chi_{449}(27,\cdot)\)
\(\chi_{449}(29,\cdot)\)
\(\chi_{449}(30,\cdot)\)
\(\chi_{449}(31,\cdot)\)
\(\chi_{449}(33,\cdot)\)
\(\chi_{449}(34,\cdot)\)
\(\chi_{449}(38,\cdot)\)
\(\chi_{449}(42,\cdot)\)
\(\chi_{449}(43,\cdot)\)
\(\chi_{449}(47,\cdot)\)
\(\chi_{449}(48,\cdot)\)
\(\chi_{449}(54,\cdot)\)
\(\chi_{449}(60,\cdot)\)
\(\chi_{449}(62,\cdot)\)
\(\chi_{449}(65,\cdot)\)
\(\chi_{449}(66,\cdot)\)
\(\chi_{449}(68,\cdot)\)
\(\chi_{449}(69,\cdot)\)
\(\chi_{449}(73,\cdot)\)
\(\chi_{449}(74,\cdot)\)
\(\chi_{449}(75,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(3\) → \(e\left(\frac{351}{448}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 449 }(30, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{224}\right)\) | \(e\left(\frac{351}{448}\right)\) | \(e\left(\frac{1}{112}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{353}{448}\right)\) | \(e\left(\frac{53}{112}\right)\) | \(e\left(\frac{3}{224}\right)\) | \(e\left(\frac{127}{224}\right)\) | \(e\left(\frac{7}{32}\right)\) | \(e\left(\frac{47}{56}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)