sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(449, base_ring=CyclotomicField(56))
M = H._module
chi = DirichletCharacter(H, M([9]))
pari:[g,chi] = znchar(Mod(198,449))
| Modulus: | \(449\) | |
| Conductor: | \(449\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(56\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{449}(11,\cdot)\)
\(\chi_{449}(16,\cdot)\)
\(\chi_{449}(28,\cdot)\)
\(\chi_{449}(49,\cdot)\)
\(\chi_{449}(55,\cdot)\)
\(\chi_{449}(80,\cdot)\)
\(\chi_{449}(93,\cdot)\)
\(\chi_{449}(140,\cdot)\)
\(\chi_{449}(161,\cdot)\)
\(\chi_{449}(174,\cdot)\)
\(\chi_{449}(198,\cdot)\)
\(\chi_{449}(204,\cdot)\)
\(\chi_{449}(245,\cdot)\)
\(\chi_{449}(251,\cdot)\)
\(\chi_{449}(275,\cdot)\)
\(\chi_{449}(288,\cdot)\)
\(\chi_{449}(309,\cdot)\)
\(\chi_{449}(356,\cdot)\)
\(\chi_{449}(369,\cdot)\)
\(\chi_{449}(394,\cdot)\)
\(\chi_{449}(400,\cdot)\)
\(\chi_{449}(421,\cdot)\)
\(\chi_{449}(433,\cdot)\)
\(\chi_{449}(438,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(3\) → \(e\left(\frac{9}{56}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 449 }(198, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{9}{56}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{55}{56}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(i\) | \(e\left(\frac{3}{7}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)