sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(449, base_ring=CyclotomicField(224))
M = H._module
chi = DirichletCharacter(H, M([149]))
pari:[g,chi] = znchar(Mod(14,449))
| Modulus: | \(449\) | |
| Conductor: | \(449\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(224\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{449}(2,\cdot)\)
\(\chi_{449}(8,\cdot)\)
\(\chi_{449}(9,\cdot)\)
\(\chi_{449}(14,\cdot)\)
\(\chi_{449}(32,\cdot)\)
\(\chi_{449}(36,\cdot)\)
\(\chi_{449}(40,\cdot)\)
\(\chi_{449}(41,\cdot)\)
\(\chi_{449}(46,\cdot)\)
\(\chi_{449}(50,\cdot)\)
\(\chi_{449}(53,\cdot)\)
\(\chi_{449}(56,\cdot)\)
\(\chi_{449}(57,\cdot)\)
\(\chi_{449}(59,\cdot)\)
\(\chi_{449}(61,\cdot)\)
\(\chi_{449}(63,\cdot)\)
\(\chi_{449}(70,\cdot)\)
\(\chi_{449}(78,\cdot)\)
\(\chi_{449}(87,\cdot)\)
\(\chi_{449}(88,\cdot)\)
\(\chi_{449}(97,\cdot)\)
\(\chi_{449}(98,\cdot)\)
\(\chi_{449}(101,\cdot)\)
\(\chi_{449}(110,\cdot)\)
\(\chi_{449}(134,\cdot)\)
\(\chi_{449}(137,\cdot)\)
\(\chi_{449}(144,\cdot)\)
\(\chi_{449}(154,\cdot)\)
\(\chi_{449}(160,\cdot)\)
\(\chi_{449}(162,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(3\) → \(e\left(\frac{149}{224}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 449 }(14, a) \) |
\(1\) | \(1\) | \(e\left(\frac{107}{112}\right)\) | \(e\left(\frac{149}{224}\right)\) | \(e\left(\frac{51}{56}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{139}{224}\right)\) | \(e\left(\frac{15}{56}\right)\) | \(e\left(\frac{97}{112}\right)\) | \(e\left(\frac{37}{112}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{17}{28}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)