Properties

Label 44100.9439
Modulus $44100$
Conductor $6300$
Order $30$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44100, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([15,20,9,5]))
 
Copy content pari:[g,chi] = znchar(Mod(9439,44100))
 

Basic properties

Modulus: \(44100\)
Conductor: \(6300\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{6300}(3139,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 44100.hs

\(\chi_{44100}(619,\cdot)\) \(\chi_{44100}(9439,\cdot)\) \(\chi_{44100}(14719,\cdot)\) \(\chi_{44100}(18259,\cdot)\) \(\chi_{44100}(23539,\cdot)\) \(\chi_{44100}(27079,\cdot)\) \(\chi_{44100}(32359,\cdot)\) \(\chi_{44100}(41179,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{3}{10}\right),e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 44100 }(9439, a) \) \(1\)\(1\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{2}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 44100 }(9439,a) \;\) at \(\;a = \) e.g. 2