Properties

Label 44100.8669
Modulus $44100$
Conductor $11025$
Order $210$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44100, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([0,35,189,155]))
 
Copy content pari:[g,chi] = znchar(Mod(8669,44100))
 

Basic properties

Modulus: \(44100\)
Conductor: \(11025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{11025}(8669,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 44100.qj

\(\chi_{44100}(1769,\cdot)\) \(\chi_{44100}(2369,\cdot)\) \(\chi_{44100}(3029,\cdot)\) \(\chi_{44100}(3629,\cdot)\) \(\chi_{44100}(4289,\cdot)\) \(\chi_{44100}(4889,\cdot)\) \(\chi_{44100}(6809,\cdot)\) \(\chi_{44100}(7409,\cdot)\) \(\chi_{44100}(8069,\cdot)\) \(\chi_{44100}(8669,\cdot)\) \(\chi_{44100}(10589,\cdot)\) \(\chi_{44100}(11189,\cdot)\) \(\chi_{44100}(13109,\cdot)\) \(\chi_{44100}(13709,\cdot)\) \(\chi_{44100}(14369,\cdot)\) \(\chi_{44100}(14969,\cdot)\) \(\chi_{44100}(15629,\cdot)\) \(\chi_{44100}(16229,\cdot)\) \(\chi_{44100}(16889,\cdot)\) \(\chi_{44100}(17489,\cdot)\) \(\chi_{44100}(19409,\cdot)\) \(\chi_{44100}(20009,\cdot)\) \(\chi_{44100}(20669,\cdot)\) \(\chi_{44100}(21269,\cdot)\) \(\chi_{44100}(21929,\cdot)\) \(\chi_{44100}(22529,\cdot)\) \(\chi_{44100}(23189,\cdot)\) \(\chi_{44100}(23789,\cdot)\) \(\chi_{44100}(25709,\cdot)\) \(\chi_{44100}(26309,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((22051,34301,15877,9901)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{9}{10}\right),e\left(\frac{31}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 44100 }(8669, a) \) \(1\)\(1\)\(e\left(\frac{19}{210}\right)\)\(e\left(\frac{83}{105}\right)\)\(e\left(\frac{137}{210}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{82}{105}\right)\)\(e\left(\frac{53}{210}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{151}{210}\right)\)\(e\left(\frac{53}{105}\right)\)\(e\left(\frac{25}{42}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 44100 }(8669,a) \;\) at \(\;a = \) e.g. 2