Properties

Label 44100.5141
Modulus $44100$
Conductor $11025$
Order $210$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44100, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([0,35,42,155]))
 
Copy content pari:[g,chi] = znchar(Mod(5141,44100))
 

Basic properties

Modulus: \(44100\)
Conductor: \(11025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{11025}(5141,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 44100.qp

\(\chi_{44100}(761,\cdot)\) \(\chi_{44100}(1361,\cdot)\) \(\chi_{44100}(2021,\cdot)\) \(\chi_{44100}(2621,\cdot)\) \(\chi_{44100}(3281,\cdot)\) \(\chi_{44100}(3881,\cdot)\) \(\chi_{44100}(4541,\cdot)\) \(\chi_{44100}(5141,\cdot)\) \(\chi_{44100}(7061,\cdot)\) \(\chi_{44100}(7661,\cdot)\) \(\chi_{44100}(8321,\cdot)\) \(\chi_{44100}(8921,\cdot)\) \(\chi_{44100}(9581,\cdot)\) \(\chi_{44100}(10181,\cdot)\) \(\chi_{44100}(10841,\cdot)\) \(\chi_{44100}(11441,\cdot)\) \(\chi_{44100}(13361,\cdot)\) \(\chi_{44100}(13961,\cdot)\) \(\chi_{44100}(15881,\cdot)\) \(\chi_{44100}(16481,\cdot)\) \(\chi_{44100}(17141,\cdot)\) \(\chi_{44100}(17741,\cdot)\) \(\chi_{44100}(19661,\cdot)\) \(\chi_{44100}(20261,\cdot)\) \(\chi_{44100}(20921,\cdot)\) \(\chi_{44100}(21521,\cdot)\) \(\chi_{44100}(22181,\cdot)\) \(\chi_{44100}(22781,\cdot)\) \(\chi_{44100}(25961,\cdot)\) \(\chi_{44100}(26561,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((22051,34301,15877,9901)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{1}{5}\right),e\left(\frac{31}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 44100 }(5141, a) \) \(1\)\(1\)\(e\left(\frac{187}{210}\right)\)\(e\left(\frac{103}{210}\right)\)\(e\left(\frac{58}{105}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{17}{210}\right)\)\(e\left(\frac{179}{210}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{44}{105}\right)\)\(e\left(\frac{74}{105}\right)\)\(e\left(\frac{2}{21}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 44100 }(5141,a) \;\) at \(\;a = \) e.g. 2