Properties

Label 44100.5137
Modulus $44100$
Conductor $11025$
Order $420$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44100, base_ring=CyclotomicField(420)) M = H._module chi = DirichletCharacter(H, M([0,280,189,150]))
 
Copy content pari:[g,chi] = znchar(Mod(5137,44100))
 

Basic properties

Modulus: \(44100\)
Conductor: \(11025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(420\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{11025}(5137,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 44100.rl

\(\chi_{44100}(13,\cdot)\) \(\chi_{44100}(517,\cdot)\) \(\chi_{44100}(853,\cdot)\) \(\chi_{44100}(1777,\cdot)\) \(\chi_{44100}(2113,\cdot)\) \(\chi_{44100}(2533,\cdot)\) \(\chi_{44100}(2617,\cdot)\) \(\chi_{44100}(3373,\cdot)\) \(\chi_{44100}(3877,\cdot)\) \(\chi_{44100}(4297,\cdot)\) \(\chi_{44100}(4633,\cdot)\) \(\chi_{44100}(5053,\cdot)\) \(\chi_{44100}(5137,\cdot)\) \(\chi_{44100}(6313,\cdot)\) \(\chi_{44100}(6397,\cdot)\) \(\chi_{44100}(6817,\cdot)\) \(\chi_{44100}(7573,\cdot)\) \(\chi_{44100}(8077,\cdot)\) \(\chi_{44100}(8413,\cdot)\) \(\chi_{44100}(8833,\cdot)\) \(\chi_{44100}(9337,\cdot)\) \(\chi_{44100}(9673,\cdot)\) \(\chi_{44100}(10177,\cdot)\) \(\chi_{44100}(10597,\cdot)\) \(\chi_{44100}(10933,\cdot)\) \(\chi_{44100}(11353,\cdot)\) \(\chi_{44100}(11437,\cdot)\) \(\chi_{44100}(12613,\cdot)\) \(\chi_{44100}(12697,\cdot)\) \(\chi_{44100}(13117,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{420})$
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

\((22051,34301,15877,9901)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{9}{20}\right),e\left(\frac{5}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 44100 }(5137, a) \) \(1\)\(1\)\(e\left(\frac{16}{105}\right)\)\(e\left(\frac{281}{420}\right)\)\(e\left(\frac{109}{140}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{359}{420}\right)\)\(e\left(\frac{209}{210}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{67}{140}\right)\)\(e\left(\frac{103}{210}\right)\)\(e\left(\frac{47}{84}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 44100 }(5137,a) \;\) at \(\;a = \) e.g. 2