sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(420))
M = H._module
chi = DirichletCharacter(H, M([210,350,273,110]))
pari:[g,chi] = znchar(Mod(4667,44100))
Modulus: | \(44100\) | |
Conductor: | \(44100\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(420\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{44100}(383,\cdot)\)
\(\chi_{44100}(887,\cdot)\)
\(\chi_{44100}(983,\cdot)\)
\(\chi_{44100}(1487,\cdot)\)
\(\chi_{44100}(2147,\cdot)\)
\(\chi_{44100}(2747,\cdot)\)
\(\chi_{44100}(2903,\cdot)\)
\(\chi_{44100}(3503,\cdot)\)
\(\chi_{44100}(4163,\cdot)\)
\(\chi_{44100}(4667,\cdot)\)
\(\chi_{44100}(4763,\cdot)\)
\(\chi_{44100}(5267,\cdot)\)
\(\chi_{44100}(5423,\cdot)\)
\(\chi_{44100}(5927,\cdot)\)
\(\chi_{44100}(6023,\cdot)\)
\(\chi_{44100}(6527,\cdot)\)
\(\chi_{44100}(7187,\cdot)\)
\(\chi_{44100}(7787,\cdot)\)
\(\chi_{44100}(9203,\cdot)\)
\(\chi_{44100}(9803,\cdot)\)
\(\chi_{44100}(10463,\cdot)\)
\(\chi_{44100}(10967,\cdot)\)
\(\chi_{44100}(11063,\cdot)\)
\(\chi_{44100}(11567,\cdot)\)
\(\chi_{44100}(11723,\cdot)\)
\(\chi_{44100}(12227,\cdot)\)
\(\chi_{44100}(12323,\cdot)\)
\(\chi_{44100}(12827,\cdot)\)
\(\chi_{44100}(12983,\cdot)\)
\(\chi_{44100}(13487,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{13}{20}\right),e\left(\frac{11}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 44100 }(4667, a) \) |
\(1\) | \(1\) | \(e\left(\frac{22}{105}\right)\) | \(e\left(\frac{277}{420}\right)\) | \(e\left(\frac{209}{420}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{323}{420}\right)\) | \(e\left(\frac{89}{105}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{97}{420}\right)\) | \(e\left(\frac{73}{105}\right)\) | \(e\left(\frac{13}{84}\right)\) |
sage:chi.jacobi_sum(n)