sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,0,0,5]))
pari:[g,chi] = znchar(Mod(43651,44100))
\(\chi_{44100}(5851,\cdot)\)
\(\chi_{44100}(18451,\cdot)\)
\(\chi_{44100}(24751,\cdot)\)
\(\chi_{44100}(31051,\cdot)\)
\(\chi_{44100}(37351,\cdot)\)
\(\chi_{44100}(43651,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((-1,1,1,e\left(\frac{5}{14}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 44100 }(43651, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(1\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{9}{14}\right)\) |
sage:chi.jacobi_sum(n)