Properties

Label 44100.4247
Modulus $44100$
Conductor $14700$
Order $420$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44100, base_ring=CyclotomicField(420)) M = H._module chi = DirichletCharacter(H, M([210,210,357,410]))
 
Copy content pari:[g,chi] = znchar(Mod(4247,44100))
 

Basic properties

Modulus: \(44100\)
Conductor: \(14700\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(420\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{14700}(4247,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 44100.rp

\(\chi_{44100}(467,\cdot)\) \(\chi_{44100}(647,\cdot)\) \(\chi_{44100}(1223,\cdot)\) \(\chi_{44100}(1727,\cdot)\) \(\chi_{44100}(2483,\cdot)\) \(\chi_{44100}(2663,\cdot)\) \(\chi_{44100}(2987,\cdot)\) \(\chi_{44100}(3923,\cdot)\) \(\chi_{44100}(4247,\cdot)\) \(\chi_{44100}(4427,\cdot)\) \(\chi_{44100}(5003,\cdot)\) \(\chi_{44100}(5183,\cdot)\) \(\chi_{44100}(5687,\cdot)\) \(\chi_{44100}(6263,\cdot)\) \(\chi_{44100}(6767,\cdot)\) \(\chi_{44100}(6947,\cdot)\) \(\chi_{44100}(7523,\cdot)\) \(\chi_{44100}(7703,\cdot)\) \(\chi_{44100}(8027,\cdot)\) \(\chi_{44100}(8783,\cdot)\) \(\chi_{44100}(8963,\cdot)\) \(\chi_{44100}(9287,\cdot)\) \(\chi_{44100}(9467,\cdot)\) \(\chi_{44100}(10547,\cdot)\) \(\chi_{44100}(10727,\cdot)\) \(\chi_{44100}(11303,\cdot)\) \(\chi_{44100}(11483,\cdot)\) \(\chi_{44100}(13067,\cdot)\) \(\chi_{44100}(13247,\cdot)\) \(\chi_{44100}(13823,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{420})$
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

\((22051,34301,15877,9901)\) → \((-1,-1,e\left(\frac{17}{20}\right),e\left(\frac{41}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 44100 }(4247, a) \) \(1\)\(1\)\(e\left(\frac{68}{105}\right)\)\(e\left(\frac{51}{140}\right)\)\(e\left(\frac{401}{420}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{187}{420}\right)\)\(e\left(\frac{27}{35}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{373}{420}\right)\)\(e\left(\frac{19}{35}\right)\)\(e\left(\frac{3}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 44100 }(4247,a) \;\) at \(\;a = \) e.g. 2