sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,10,3,50]))
pari:[g,chi] = znchar(Mod(29027,44100))
\(\chi_{44100}(803,\cdot)\)
\(\chi_{44100}(2567,\cdot)\)
\(\chi_{44100}(9623,\cdot)\)
\(\chi_{44100}(11387,\cdot)\)
\(\chi_{44100}(13163,\cdot)\)
\(\chi_{44100}(14927,\cdot)\)
\(\chi_{44100}(21983,\cdot)\)
\(\chi_{44100}(23747,\cdot)\)
\(\chi_{44100}(27263,\cdot)\)
\(\chi_{44100}(29027,\cdot)\)
\(\chi_{44100}(30803,\cdot)\)
\(\chi_{44100}(32567,\cdot)\)
\(\chi_{44100}(36083,\cdot)\)
\(\chi_{44100}(37847,\cdot)\)
\(\chi_{44100}(39623,\cdot)\)
\(\chi_{44100}(41387,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{1}{20}\right),e\left(\frac{5}{6}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 44100 }(29027, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{11}{12}\right)\) |
sage:chi.jacobi_sum(n)