sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([105,175,42,205]))
pari:[g,chi] = znchar(Mod(26591,44100))
Modulus: | \(44100\) | |
Conductor: | \(44100\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{44100}(131,\cdot)\)
\(\chi_{44100}(731,\cdot)\)
\(\chi_{44100}(3911,\cdot)\)
\(\chi_{44100}(4511,\cdot)\)
\(\chi_{44100}(5171,\cdot)\)
\(\chi_{44100}(5771,\cdot)\)
\(\chi_{44100}(6431,\cdot)\)
\(\chi_{44100}(7031,\cdot)\)
\(\chi_{44100}(7691,\cdot)\)
\(\chi_{44100}(8291,\cdot)\)
\(\chi_{44100}(11471,\cdot)\)
\(\chi_{44100}(12071,\cdot)\)
\(\chi_{44100}(12731,\cdot)\)
\(\chi_{44100}(13331,\cdot)\)
\(\chi_{44100}(13991,\cdot)\)
\(\chi_{44100}(14591,\cdot)\)
\(\chi_{44100}(16511,\cdot)\)
\(\chi_{44100}(17111,\cdot)\)
\(\chi_{44100}(17771,\cdot)\)
\(\chi_{44100}(18371,\cdot)\)
\(\chi_{44100}(20291,\cdot)\)
\(\chi_{44100}(20891,\cdot)\)
\(\chi_{44100}(22811,\cdot)\)
\(\chi_{44100}(23411,\cdot)\)
\(\chi_{44100}(24071,\cdot)\)
\(\chi_{44100}(24671,\cdot)\)
\(\chi_{44100}(25331,\cdot)\)
\(\chi_{44100}(25931,\cdot)\)
\(\chi_{44100}(26591,\cdot)\)
\(\chi_{44100}(27191,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{1}{5}\right),e\left(\frac{41}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 44100 }(26591, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{61}{105}\right)\) | \(e\left(\frac{143}{210}\right)\) | \(e\left(\frac{53}{105}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{101}{105}\right)\) | \(e\left(\frac{169}{210}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{105}\right)\) | \(e\left(\frac{64}{105}\right)\) | \(e\left(\frac{29}{42}\right)\) |
sage:chi.jacobi_sum(n)