sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,40,9,20]))
pari:[g,chi] = znchar(Mod(19483,44100))
\(\chi_{44100}(67,\cdot)\)
\(\chi_{44100}(7123,\cdot)\)
\(\chi_{44100}(8887,\cdot)\)
\(\chi_{44100}(10663,\cdot)\)
\(\chi_{44100}(12427,\cdot)\)
\(\chi_{44100}(19483,\cdot)\)
\(\chi_{44100}(21247,\cdot)\)
\(\chi_{44100}(24763,\cdot)\)
\(\chi_{44100}(26527,\cdot)\)
\(\chi_{44100}(28303,\cdot)\)
\(\chi_{44100}(30067,\cdot)\)
\(\chi_{44100}(33583,\cdot)\)
\(\chi_{44100}(35347,\cdot)\)
\(\chi_{44100}(37123,\cdot)\)
\(\chi_{44100}(38887,\cdot)\)
\(\chi_{44100}(42403,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{3}{20}\right),e\left(\frac{1}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 44100 }(19483, a) \) |
\(1\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{5}{12}\right)\) |
sage:chi.jacobi_sum(n)