Properties

Label 44100.18421
Modulus $44100$
Conductor $11025$
Order $105$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44100, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([0,140,126,110]))
 
Copy content pari:[g,chi] = znchar(Mod(18421,44100))
 

Basic properties

Modulus: \(44100\)
Conductor: \(11025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(105\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{11025}(7396,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 44100.om

\(\chi_{44100}(121,\cdot)\) \(\chi_{44100}(781,\cdot)\) \(\chi_{44100}(1381,\cdot)\) \(\chi_{44100}(2041,\cdot)\) \(\chi_{44100}(2641,\cdot)\) \(\chi_{44100}(4561,\cdot)\) \(\chi_{44100}(5161,\cdot)\) \(\chi_{44100}(5821,\cdot)\) \(\chi_{44100}(6421,\cdot)\) \(\chi_{44100}(7081,\cdot)\) \(\chi_{44100}(7681,\cdot)\) \(\chi_{44100}(8341,\cdot)\) \(\chi_{44100}(8941,\cdot)\) \(\chi_{44100}(10861,\cdot)\) \(\chi_{44100}(11461,\cdot)\) \(\chi_{44100}(13381,\cdot)\) \(\chi_{44100}(13981,\cdot)\) \(\chi_{44100}(14641,\cdot)\) \(\chi_{44100}(15241,\cdot)\) \(\chi_{44100}(17161,\cdot)\) \(\chi_{44100}(17761,\cdot)\) \(\chi_{44100}(18421,\cdot)\) \(\chi_{44100}(19021,\cdot)\) \(\chi_{44100}(19681,\cdot)\) \(\chi_{44100}(20281,\cdot)\) \(\chi_{44100}(23461,\cdot)\) \(\chi_{44100}(24061,\cdot)\) \(\chi_{44100}(24721,\cdot)\) \(\chi_{44100}(25321,\cdot)\) \(\chi_{44100}(25981,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 105 polynomial (not computed)

Values on generators

\((22051,34301,15877,9901)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{3}{5}\right),e\left(\frac{11}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 44100 }(18421, a) \) \(1\)\(1\)\(e\left(\frac{23}{105}\right)\)\(e\left(\frac{2}{105}\right)\)\(e\left(\frac{94}{105}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{88}{105}\right)\)\(e\left(\frac{31}{105}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{17}{105}\right)\)\(e\left(\frac{62}{105}\right)\)\(e\left(\frac{17}{21}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 44100 }(18421,a) \;\) at \(\;a = \) e.g. 2