Properties

Label 44100.13697
Modulus $44100$
Conductor $3675$
Order $420$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44100, base_ring=CyclotomicField(420)) M = H._module chi = DirichletCharacter(H, M([0,210,357,170]))
 
Copy content pari:[g,chi] = znchar(Mod(13697,44100))
 

Basic properties

Modulus: \(44100\)
Conductor: \(3675\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(420\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3675}(2672,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 44100.sf

\(\chi_{44100}(17,\cdot)\) \(\chi_{44100}(773,\cdot)\) \(\chi_{44100}(1277,\cdot)\) \(\chi_{44100}(1853,\cdot)\) \(\chi_{44100}(2033,\cdot)\) \(\chi_{44100}(2537,\cdot)\) \(\chi_{44100}(3113,\cdot)\) \(\chi_{44100}(3617,\cdot)\) \(\chi_{44100}(3797,\cdot)\) \(\chi_{44100}(4373,\cdot)\) \(\chi_{44100}(4553,\cdot)\) \(\chi_{44100}(4877,\cdot)\) \(\chi_{44100}(5633,\cdot)\) \(\chi_{44100}(6137,\cdot)\) \(\chi_{44100}(6317,\cdot)\) \(\chi_{44100}(7073,\cdot)\) \(\chi_{44100}(7397,\cdot)\) \(\chi_{44100}(8333,\cdot)\) \(\chi_{44100}(8837,\cdot)\) \(\chi_{44100}(9413,\cdot)\) \(\chi_{44100}(10097,\cdot)\) \(\chi_{44100}(10673,\cdot)\) \(\chi_{44100}(10853,\cdot)\) \(\chi_{44100}(11177,\cdot)\) \(\chi_{44100}(11933,\cdot)\) \(\chi_{44100}(12113,\cdot)\) \(\chi_{44100}(12437,\cdot)\) \(\chi_{44100}(12617,\cdot)\) \(\chi_{44100}(13373,\cdot)\) \(\chi_{44100}(13697,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{420})$
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

\((22051,34301,15877,9901)\) → \((1,-1,e\left(\frac{17}{20}\right),e\left(\frac{17}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 44100 }(13697, a) \) \(-1\)\(1\)\(e\left(\frac{61}{210}\right)\)\(e\left(\frac{71}{140}\right)\)\(e\left(\frac{281}{420}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{97}{420}\right)\)\(e\left(\frac{17}{35}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{253}{420}\right)\)\(e\left(\frac{34}{35}\right)\)\(e\left(\frac{5}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 44100 }(13697,a) \;\) at \(\;a = \) e.g. 2