sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([105,175,21,130]))
pari:[g,chi] = znchar(Mod(13379,44100))
Modulus: | \(44100\) | |
Conductor: | \(44100\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{44100}(779,\cdot)\)
\(\chi_{44100}(1019,\cdot)\)
\(\chi_{44100}(2279,\cdot)\)
\(\chi_{44100}(3539,\cdot)\)
\(\chi_{44100}(4559,\cdot)\)
\(\chi_{44100}(5819,\cdot)\)
\(\chi_{44100}(6059,\cdot)\)
\(\chi_{44100}(7079,\cdot)\)
\(\chi_{44100}(8339,\cdot)\)
\(\chi_{44100}(8579,\cdot)\)
\(\chi_{44100}(9839,\cdot)\)
\(\chi_{44100}(12119,\cdot)\)
\(\chi_{44100}(12359,\cdot)\)
\(\chi_{44100}(13379,\cdot)\)
\(\chi_{44100}(13619,\cdot)\)
\(\chi_{44100}(14639,\cdot)\)
\(\chi_{44100}(14879,\cdot)\)
\(\chi_{44100}(17159,\cdot)\)
\(\chi_{44100}(18419,\cdot)\)
\(\chi_{44100}(18659,\cdot)\)
\(\chi_{44100}(19919,\cdot)\)
\(\chi_{44100}(20939,\cdot)\)
\(\chi_{44100}(21179,\cdot)\)
\(\chi_{44100}(22439,\cdot)\)
\(\chi_{44100}(23459,\cdot)\)
\(\chi_{44100}(24719,\cdot)\)
\(\chi_{44100}(25979,\cdot)\)
\(\chi_{44100}(26219,\cdot)\)
\(\chi_{44100}(27239,\cdot)\)
\(\chi_{44100}(27479,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{1}{10}\right),e\left(\frac{13}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 44100 }(13379, a) \) |
\(1\) | \(1\) | \(e\left(\frac{73}{105}\right)\) | \(e\left(\frac{209}{210}\right)\) | \(e\left(\frac{29}{105}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{61}{210}\right)\) | \(e\left(\frac{37}{210}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{149}{210}\right)\) | \(e\left(\frac{179}{210}\right)\) | \(e\left(\frac{1}{21}\right)\) |
sage:chi.jacobi_sum(n)