Properties

Label 44100.13129
Modulus $44100$
Conductor $11025$
Order $210$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44100, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([0,140,21,110]))
 
Copy content pari:[g,chi] = znchar(Mod(13129,44100))
 

Basic properties

Modulus: \(44100\)
Conductor: \(11025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{11025}(2104,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 44100.pv

\(\chi_{44100}(529,\cdot)\) \(\chi_{44100}(1129,\cdot)\) \(\chi_{44100}(1789,\cdot)\) \(\chi_{44100}(2389,\cdot)\) \(\chi_{44100}(4309,\cdot)\) \(\chi_{44100}(4909,\cdot)\) \(\chi_{44100}(5569,\cdot)\) \(\chi_{44100}(6169,\cdot)\) \(\chi_{44100}(8089,\cdot)\) \(\chi_{44100}(8689,\cdot)\) \(\chi_{44100}(10609,\cdot)\) \(\chi_{44100}(11209,\cdot)\) \(\chi_{44100}(11869,\cdot)\) \(\chi_{44100}(12469,\cdot)\) \(\chi_{44100}(13129,\cdot)\) \(\chi_{44100}(13729,\cdot)\) \(\chi_{44100}(14389,\cdot)\) \(\chi_{44100}(14989,\cdot)\) \(\chi_{44100}(16909,\cdot)\) \(\chi_{44100}(17509,\cdot)\) \(\chi_{44100}(18169,\cdot)\) \(\chi_{44100}(18769,\cdot)\) \(\chi_{44100}(19429,\cdot)\) \(\chi_{44100}(20029,\cdot)\) \(\chi_{44100}(20689,\cdot)\) \(\chi_{44100}(21289,\cdot)\) \(\chi_{44100}(23209,\cdot)\) \(\chi_{44100}(23809,\cdot)\) \(\chi_{44100}(25729,\cdot)\) \(\chi_{44100}(26329,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((22051,34301,15877,9901)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{1}{10}\right),e\left(\frac{11}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 44100 }(13129, a) \) \(1\)\(1\)\(e\left(\frac{23}{105}\right)\)\(e\left(\frac{109}{210}\right)\)\(e\left(\frac{83}{210}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{71}{210}\right)\)\(e\left(\frac{31}{105}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{139}{210}\right)\)\(e\left(\frac{62}{105}\right)\)\(e\left(\frac{13}{42}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 44100 }(13129,a) \;\) at \(\;a = \) e.g. 2