Properties

Label 44100.12653
Modulus $44100$
Conductor $3675$
Order $420$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44100, base_ring=CyclotomicField(420)) M = H._module chi = DirichletCharacter(H, M([0,210,147,400]))
 
Copy content pari:[g,chi] = znchar(Mod(12653,44100))
 

Basic properties

Modulus: \(44100\)
Conductor: \(3675\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(420\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3675}(1628,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 44100.sb

\(\chi_{44100}(53,\cdot)\) \(\chi_{44100}(233,\cdot)\) \(\chi_{44100}(737,\cdot)\) \(\chi_{44100}(1313,\cdot)\) \(\chi_{44100}(1817,\cdot)\) \(\chi_{44100}(1997,\cdot)\) \(\chi_{44100}(2573,\cdot)\) \(\chi_{44100}(2753,\cdot)\) \(\chi_{44100}(3077,\cdot)\) \(\chi_{44100}(3833,\cdot)\) \(\chi_{44100}(4013,\cdot)\) \(\chi_{44100}(4337,\cdot)\) \(\chi_{44100}(4517,\cdot)\) \(\chi_{44100}(5597,\cdot)\) \(\chi_{44100}(5777,\cdot)\) \(\chi_{44100}(6353,\cdot)\) \(\chi_{44100}(6533,\cdot)\) \(\chi_{44100}(8117,\cdot)\) \(\chi_{44100}(8297,\cdot)\) \(\chi_{44100}(8873,\cdot)\) \(\chi_{44100}(9053,\cdot)\) \(\chi_{44100}(10133,\cdot)\) \(\chi_{44100}(10313,\cdot)\) \(\chi_{44100}(10637,\cdot)\) \(\chi_{44100}(10817,\cdot)\) \(\chi_{44100}(11573,\cdot)\) \(\chi_{44100}(11897,\cdot)\) \(\chi_{44100}(12077,\cdot)\) \(\chi_{44100}(12653,\cdot)\) \(\chi_{44100}(12833,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{420})$
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

\((22051,34301,15877,9901)\) → \((1,-1,e\left(\frac{7}{20}\right),e\left(\frac{20}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 44100 }(12653, a) \) \(1\)\(1\)\(e\left(\frac{41}{210}\right)\)\(e\left(\frac{11}{140}\right)\)\(e\left(\frac{361}{420}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{227}{420}\right)\)\(e\left(\frac{12}{35}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{263}{420}\right)\)\(e\left(\frac{13}{70}\right)\)\(e\left(\frac{27}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 44100 }(12653,a) \;\) at \(\;a = \) e.g. 2