sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,30,57,50]))
pari:[g,chi] = znchar(Mod(12563,44100))
\(\chi_{44100}(1403,\cdot)\)
\(\chi_{44100}(3167,\cdot)\)
\(\chi_{44100}(10223,\cdot)\)
\(\chi_{44100}(11987,\cdot)\)
\(\chi_{44100}(12563,\cdot)\)
\(\chi_{44100}(14327,\cdot)\)
\(\chi_{44100}(21383,\cdot)\)
\(\chi_{44100}(23147,\cdot)\)
\(\chi_{44100}(27863,\cdot)\)
\(\chi_{44100}(29627,\cdot)\)
\(\chi_{44100}(30203,\cdot)\)
\(\chi_{44100}(31967,\cdot)\)
\(\chi_{44100}(36683,\cdot)\)
\(\chi_{44100}(38447,\cdot)\)
\(\chi_{44100}(39023,\cdot)\)
\(\chi_{44100}(40787,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((-1,-1,e\left(\frac{19}{20}\right),e\left(\frac{5}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 44100 }(12563, a) \) |
\(1\) | \(1\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(-i\) |
sage:chi.jacobi_sum(n)