Properties

Label 44100.1153
Modulus $44100$
Conductor $1225$
Order $420$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44100, base_ring=CyclotomicField(420)) M = H._module chi = DirichletCharacter(H, M([0,0,147,170]))
 
Copy content pari:[g,chi] = znchar(Mod(1153,44100))
 

Basic properties

Modulus: \(44100\)
Conductor: \(1225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(420\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1225}(1153,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 44100.rq

\(\chi_{44100}(73,\cdot)\) \(\chi_{44100}(397,\cdot)\) \(\chi_{44100}(577,\cdot)\) \(\chi_{44100}(1153,\cdot)\) \(\chi_{44100}(1333,\cdot)\) \(\chi_{44100}(1837,\cdot)\) \(\chi_{44100}(2413,\cdot)\) \(\chi_{44100}(2917,\cdot)\) \(\chi_{44100}(3097,\cdot)\) \(\chi_{44100}(3673,\cdot)\) \(\chi_{44100}(4177,\cdot)\) \(\chi_{44100}(4933,\cdot)\) \(\chi_{44100}(5113,\cdot)\) \(\chi_{44100}(5437,\cdot)\) \(\chi_{44100}(6373,\cdot)\) \(\chi_{44100}(6697,\cdot)\) \(\chi_{44100}(6877,\cdot)\) \(\chi_{44100}(7453,\cdot)\) \(\chi_{44100}(7633,\cdot)\) \(\chi_{44100}(8137,\cdot)\) \(\chi_{44100}(8713,\cdot)\) \(\chi_{44100}(9217,\cdot)\) \(\chi_{44100}(9397,\cdot)\) \(\chi_{44100}(9973,\cdot)\) \(\chi_{44100}(10153,\cdot)\) \(\chi_{44100}(10477,\cdot)\) \(\chi_{44100}(11233,\cdot)\) \(\chi_{44100}(11413,\cdot)\) \(\chi_{44100}(11737,\cdot)\) \(\chi_{44100}(11917,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{420})$
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

\((22051,34301,15877,9901)\) → \((1,1,e\left(\frac{7}{20}\right),e\left(\frac{17}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 44100 }(1153, a) \) \(1\)\(1\)\(e\left(\frac{83}{105}\right)\)\(e\left(\frac{1}{140}\right)\)\(e\left(\frac{281}{420}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{97}{420}\right)\)\(e\left(\frac{69}{70}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{43}{420}\right)\)\(e\left(\frac{33}{70}\right)\)\(e\left(\frac{19}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 44100 }(1153,a) \;\) at \(\;a = \) e.g. 2