sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([105,70,126,5]))
pari:[g,chi] = znchar(Mod(11371,44100))
Modulus: | \(44100\) | |
Conductor: | \(44100\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{44100}(691,\cdot)\)
\(\chi_{44100}(1291,\cdot)\)
\(\chi_{44100}(3211,\cdot)\)
\(\chi_{44100}(3811,\cdot)\)
\(\chi_{44100}(4471,\cdot)\)
\(\chi_{44100}(5071,\cdot)\)
\(\chi_{44100}(5731,\cdot)\)
\(\chi_{44100}(6331,\cdot)\)
\(\chi_{44100}(6991,\cdot)\)
\(\chi_{44100}(7591,\cdot)\)
\(\chi_{44100}(9511,\cdot)\)
\(\chi_{44100}(10111,\cdot)\)
\(\chi_{44100}(10771,\cdot)\)
\(\chi_{44100}(11371,\cdot)\)
\(\chi_{44100}(12031,\cdot)\)
\(\chi_{44100}(12631,\cdot)\)
\(\chi_{44100}(13291,\cdot)\)
\(\chi_{44100}(13891,\cdot)\)
\(\chi_{44100}(15811,\cdot)\)
\(\chi_{44100}(16411,\cdot)\)
\(\chi_{44100}(18331,\cdot)\)
\(\chi_{44100}(18931,\cdot)\)
\(\chi_{44100}(19591,\cdot)\)
\(\chi_{44100}(20191,\cdot)\)
\(\chi_{44100}(22111,\cdot)\)
\(\chi_{44100}(22711,\cdot)\)
\(\chi_{44100}(23371,\cdot)\)
\(\chi_{44100}(23971,\cdot)\)
\(\chi_{44100}(24631,\cdot)\)
\(\chi_{44100}(25231,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{1}{3}\right),e\left(\frac{3}{5}\right),e\left(\frac{1}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 44100 }(11371, a) \) |
\(1\) | \(1\) | \(e\left(\frac{27}{70}\right)\) | \(e\left(\frac{179}{210}\right)\) | \(e\left(\frac{83}{210}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{47}{70}\right)\) | \(e\left(\frac{101}{105}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{17}{105}\right)\) | \(e\left(\frac{89}{210}\right)\) | \(e\left(\frac{41}{42}\right)\) |
sage:chi.jacobi_sum(n)