sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([105,70,189,155]))
pari:[g,chi] = znchar(Mod(11119,44100))
Modulus: | \(44100\) | |
Conductor: | \(44100\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{44100}(439,\cdot)\)
\(\chi_{44100}(1039,\cdot)\)
\(\chi_{44100}(4219,\cdot)\)
\(\chi_{44100}(4819,\cdot)\)
\(\chi_{44100}(5479,\cdot)\)
\(\chi_{44100}(6079,\cdot)\)
\(\chi_{44100}(6739,\cdot)\)
\(\chi_{44100}(7339,\cdot)\)
\(\chi_{44100}(9259,\cdot)\)
\(\chi_{44100}(9859,\cdot)\)
\(\chi_{44100}(10519,\cdot)\)
\(\chi_{44100}(11119,\cdot)\)
\(\chi_{44100}(13039,\cdot)\)
\(\chi_{44100}(13639,\cdot)\)
\(\chi_{44100}(15559,\cdot)\)
\(\chi_{44100}(16159,\cdot)\)
\(\chi_{44100}(16819,\cdot)\)
\(\chi_{44100}(17419,\cdot)\)
\(\chi_{44100}(18079,\cdot)\)
\(\chi_{44100}(18679,\cdot)\)
\(\chi_{44100}(19339,\cdot)\)
\(\chi_{44100}(19939,\cdot)\)
\(\chi_{44100}(21859,\cdot)\)
\(\chi_{44100}(22459,\cdot)\)
\(\chi_{44100}(23119,\cdot)\)
\(\chi_{44100}(23719,\cdot)\)
\(\chi_{44100}(24379,\cdot)\)
\(\chi_{44100}(24979,\cdot)\)
\(\chi_{44100}(25639,\cdot)\)
\(\chi_{44100}(26239,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{1}{3}\right),e\left(\frac{9}{10}\right),e\left(\frac{31}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 44100 }(11119, a) \) |
\(1\) | \(1\) | \(e\left(\frac{53}{70}\right)\) | \(e\left(\frac{13}{105}\right)\) | \(e\left(\frac{16}{105}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{4}{35}\right)\) | \(e\left(\frac{44}{105}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{151}{210}\right)\) | \(e\left(\frac{71}{210}\right)\) | \(e\left(\frac{16}{21}\right)\) |
sage:chi.jacobi_sum(n)