Properties

Label 44100.11119
Modulus $44100$
Conductor $44100$
Order $210$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44100, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([105,70,189,155]))
 
Copy content pari:[g,chi] = znchar(Mod(11119,44100))
 

Basic properties

Modulus: \(44100\)
Conductor: \(44100\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 44100.oz

\(\chi_{44100}(439,\cdot)\) \(\chi_{44100}(1039,\cdot)\) \(\chi_{44100}(4219,\cdot)\) \(\chi_{44100}(4819,\cdot)\) \(\chi_{44100}(5479,\cdot)\) \(\chi_{44100}(6079,\cdot)\) \(\chi_{44100}(6739,\cdot)\) \(\chi_{44100}(7339,\cdot)\) \(\chi_{44100}(9259,\cdot)\) \(\chi_{44100}(9859,\cdot)\) \(\chi_{44100}(10519,\cdot)\) \(\chi_{44100}(11119,\cdot)\) \(\chi_{44100}(13039,\cdot)\) \(\chi_{44100}(13639,\cdot)\) \(\chi_{44100}(15559,\cdot)\) \(\chi_{44100}(16159,\cdot)\) \(\chi_{44100}(16819,\cdot)\) \(\chi_{44100}(17419,\cdot)\) \(\chi_{44100}(18079,\cdot)\) \(\chi_{44100}(18679,\cdot)\) \(\chi_{44100}(19339,\cdot)\) \(\chi_{44100}(19939,\cdot)\) \(\chi_{44100}(21859,\cdot)\) \(\chi_{44100}(22459,\cdot)\) \(\chi_{44100}(23119,\cdot)\) \(\chi_{44100}(23719,\cdot)\) \(\chi_{44100}(24379,\cdot)\) \(\chi_{44100}(24979,\cdot)\) \(\chi_{44100}(25639,\cdot)\) \(\chi_{44100}(26239,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{1}{3}\right),e\left(\frac{9}{10}\right),e\left(\frac{31}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 44100 }(11119, a) \) \(1\)\(1\)\(e\left(\frac{53}{70}\right)\)\(e\left(\frac{13}{105}\right)\)\(e\left(\frac{16}{105}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{4}{35}\right)\)\(e\left(\frac{44}{105}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{151}{210}\right)\)\(e\left(\frac{71}{210}\right)\)\(e\left(\frac{16}{21}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 44100 }(11119,a) \;\) at \(\;a = \) e.g. 2