sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([105,35,168,200]))
pari:[g,chi] = znchar(Mod(11,44100))
Modulus: | \(44100\) | |
Conductor: | \(44100\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{44100}(11,\cdot)\)
\(\chi_{44100}(1031,\cdot)\)
\(\chi_{44100}(1271,\cdot)\)
\(\chi_{44100}(2291,\cdot)\)
\(\chi_{44100}(2531,\cdot)\)
\(\chi_{44100}(4811,\cdot)\)
\(\chi_{44100}(6071,\cdot)\)
\(\chi_{44100}(6311,\cdot)\)
\(\chi_{44100}(7571,\cdot)\)
\(\chi_{44100}(8591,\cdot)\)
\(\chi_{44100}(8831,\cdot)\)
\(\chi_{44100}(10091,\cdot)\)
\(\chi_{44100}(11111,\cdot)\)
\(\chi_{44100}(12371,\cdot)\)
\(\chi_{44100}(13631,\cdot)\)
\(\chi_{44100}(13871,\cdot)\)
\(\chi_{44100}(14891,\cdot)\)
\(\chi_{44100}(15131,\cdot)\)
\(\chi_{44100}(16391,\cdot)\)
\(\chi_{44100}(17411,\cdot)\)
\(\chi_{44100}(18671,\cdot)\)
\(\chi_{44100}(18911,\cdot)\)
\(\chi_{44100}(19931,\cdot)\)
\(\chi_{44100}(20171,\cdot)\)
\(\chi_{44100}(21191,\cdot)\)
\(\chi_{44100}(22691,\cdot)\)
\(\chi_{44100}(23711,\cdot)\)
\(\chi_{44100}(25211,\cdot)\)
\(\chi_{44100}(26231,\cdot)\)
\(\chi_{44100}(26471,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{4}{5}\right),e\left(\frac{20}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 44100 }(11, a) \) |
\(1\) | \(1\) | \(e\left(\frac{59}{105}\right)\) | \(e\left(\frac{101}{105}\right)\) | \(e\left(\frac{149}{210}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{34}{105}\right)\) | \(e\left(\frac{191}{210}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{71}{105}\right)\) | \(e\left(\frac{67}{210}\right)\) | \(e\left(\frac{37}{42}\right)\) |
sage:chi.jacobi_sum(n)