Properties

Label 44100.11
Modulus $44100$
Conductor $44100$
Order $210$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44100, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([105,35,168,200]))
 
Copy content pari:[g,chi] = znchar(Mod(11,44100))
 

Basic properties

Modulus: \(44100\)
Conductor: \(44100\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 44100.pn

\(\chi_{44100}(11,\cdot)\) \(\chi_{44100}(1031,\cdot)\) \(\chi_{44100}(1271,\cdot)\) \(\chi_{44100}(2291,\cdot)\) \(\chi_{44100}(2531,\cdot)\) \(\chi_{44100}(4811,\cdot)\) \(\chi_{44100}(6071,\cdot)\) \(\chi_{44100}(6311,\cdot)\) \(\chi_{44100}(7571,\cdot)\) \(\chi_{44100}(8591,\cdot)\) \(\chi_{44100}(8831,\cdot)\) \(\chi_{44100}(10091,\cdot)\) \(\chi_{44100}(11111,\cdot)\) \(\chi_{44100}(12371,\cdot)\) \(\chi_{44100}(13631,\cdot)\) \(\chi_{44100}(13871,\cdot)\) \(\chi_{44100}(14891,\cdot)\) \(\chi_{44100}(15131,\cdot)\) \(\chi_{44100}(16391,\cdot)\) \(\chi_{44100}(17411,\cdot)\) \(\chi_{44100}(18671,\cdot)\) \(\chi_{44100}(18911,\cdot)\) \(\chi_{44100}(19931,\cdot)\) \(\chi_{44100}(20171,\cdot)\) \(\chi_{44100}(21191,\cdot)\) \(\chi_{44100}(22691,\cdot)\) \(\chi_{44100}(23711,\cdot)\) \(\chi_{44100}(25211,\cdot)\) \(\chi_{44100}(26231,\cdot)\) \(\chi_{44100}(26471,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{4}{5}\right),e\left(\frac{20}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 44100 }(11, a) \) \(1\)\(1\)\(e\left(\frac{59}{105}\right)\)\(e\left(\frac{101}{105}\right)\)\(e\left(\frac{149}{210}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{34}{105}\right)\)\(e\left(\frac{191}{210}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{71}{105}\right)\)\(e\left(\frac{67}{210}\right)\)\(e\left(\frac{37}{42}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 44100 }(11,a) \;\) at \(\;a = \) e.g. 2